scholarly journals Reduction of Stromatinia cepivora inocula and control of white rot disease in onion and garlic crops by repeated soil applications with sclerotial germination stimulants

Heliyon ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. e01168 ◽  
Author(s):  
Ibrahim E. Elshahawy ◽  
Ahmed A. Morsy ◽  
Farid Abd-El-Kareem ◽  
Nehal M. Saied
2018 ◽  
Vol 100 (3) ◽  
pp. 493-503 ◽  
Author(s):  
Ibrahim E. Elshahawy ◽  
Nehal M. Saied ◽  
Farid Abd-El-Kareem ◽  
Ahmed A. Morsy

2009 ◽  
Vol 9 (2) ◽  
pp. 149-157
Author(s):  
Joko Prasetyo ◽  
Titik Nur Aeny ◽  
Radix Suharjo

The corelations between White Rot (Rigidoporus lignosus L.) incidence and  soil characters of rubber ecosystem in Penumangan Baru, Lampung. A study was conducted to evaluate the corelation between soil characters and white rot incidence. The study was done in Penumangan Lampung from June 2007 to July 2008. Seven sites were observed on the incidence of white rot of indicator plants (cassava). Physical, chemical, and biological soil characters were correlated and regressed with white rot incidence. The results showed that there were correlation between white rot incidence and soil characters such as pH KCl, number of fungal genus (fungal diversity), Ca+, total cation, CEC, and saturation base. Ion Ca+, total cation, saturation base correlated positively with white rot incidence, on the contrary, fungal diversity, cation exchange capacity, and pH KCl correlated negatively with white rot incidence. Thus, efforts to increase fungal diversity, cation exchange capacity, and pH (in acidic soil) could be used as basic strategies to develope intergrated  control of white rot disease.


AgriPeat ◽  
2019 ◽  
Vol 20 (02) ◽  
pp. 92-98
Author(s):  
Admin Journal

ABSTRACTThis study aims to determine effective management patterns to control Sclerotium rot and to improvepeat soil fertility with the application of the Trichoderma sp + Aspergillus sp consortium.as biologicalagents and P solvents, combined with spacing arrangements in the cultivation of scallion in peatlands.The study used a factorial randomized block design consisting of two factors with four replications.Factor I Application of biological agents consists of: A0 = No biological agents; A1 = Consortium ofTrichoderma sp. + Aspergillus sp; Factor II Plant spacing, consisting of J1 = 20x25 cm; J2 = 25x25cm and J3 = 30x25 cm. The results showed that the interaction treatment of Trichoderma sp. +Aspergillus sp. and spacing of 25x25 cm effectively suppresses the incidence of white rot disease(Sclerotium cepivorum Berk) up to 34.02%, while at a spacing of 20x25 cm with the application ofTrichoderma sp. + Aspergillus sp. produced the highest fresh plant weight of 8.80 kg plot-1 or 24.44tons hectares-1. Increasing the number of leaves is only influenced by a single factor of biologicalagents (23.29%) and spacing of 25x25 cm (19.7%). Application of Trichoderma sp. + Aspergillus sp.can increase the nutrient content of N, P (total and available), K and peat soil organic matter.Consortium of biological agents Trichoderma sp. and Aspergillus sp. indigenous have the potential tobe developed as biological agents and biofertilizers, with optimum spacing can be applied to themanagement of scallion cultivation in peatlands.Key words: Sclerotium cepivorum Berk, scallion, Trichoderma sp. and Aspergillus sp., spacing


2020 ◽  
Vol 8 (5) ◽  
pp. 697 ◽  
Author(s):  
Jieling Li ◽  
Ming Hu ◽  
Yang Xue ◽  
Xia Chen ◽  
Guangtao Lu ◽  
...  

Dickeya zeae is the causal agent of bacterial soft rot disease, with a wide range of hosts all over the world. At present, chemical agents, especially agricultural antibiotics, are commonly used in the prevention and control of bacterial soft rot, causing the emergence of resistant pathogens and therefore increasing the difficulty of disease prevention and control. This study aims to provide a safer and more effective biocontrol method for soft rot disease caused by D. zeae. The spot-on-lawn assay was used to screen antagonistic bacteria, and three strains including SC3, SC11 and 3-10 revealed strong antagonistic effects and were identified as Pseudomonas fluorescens, P. parafulva and Bacillus velezensis, respectively, using multi-locus sequence analysis (MLSA) based on the sequences of 16S rRNA and other housekeeping genes. In vitro antimicrobial activity showed that two Pseudomonas strains SC3 and SC11 were only antagonistic to some pathogenic bacteria, while strain 3-10 had broad-spectrum antimicrobial activity on both pathogenic bacteria and fungi. Evaluation of control efficacy in greenhouse trials showed that they all restrained the occurrence and development of soft rot disease caused by D. zeae MS2 or EC1. Among them, strain SC3 had the most impressive biocontrol efficacy on alleviating the soft rot symptoms on both monocotyledonous and dicotyledonous hosts, and strain 3-10 additionally reduced the occurrence of banana wilt disease caused by Fusarium oxysporum f. sp. cubensis. This is the first report of P. fluorescens, P. parafulva and B. velezensis as potential bio-reagents on controlling soft rot disease caused by D. zeae.


2020 ◽  
Vol 8 (1) ◽  
pp. 167
Author(s):  
Ni Nyoman Sulastri ◽  
Shelyn Gehle

The purpose of this study was to maintain minimum moisture content for switchgrass bales that were inoculated with Pleurotus ostreatus, a white-rot fungus, in order to start the breakdown of lignin for conversion to ethanol. The moisture content was to be maintained above 50%, which would be monitored using load cells to determine the weight. Three bales were used, and thermocouple wires and hose system were placed at four points inside each bale. In addition, the ambient temperature and relative humidity inside the building were monitored. Bales were inoculated with 1%, 2%, and 3% grain spawn by mass.  The inoculation was carried out by taking the bale apart in four places and sprinkling or spreading the fungal spawn over the bale. In order to continuously record the voltage readings from the strain gauges, NI USB-6225 data logger and National Instruments’ LabVIEW program was used to record and control the system. The develop automatic weighing and watering system had been able to maintain the bale moisture within the acceptable range and the fungus were observed growing.  Some issues related to voltage readings and uniformity of water distribution must be addressed for future work.


Sign in / Sign up

Export Citation Format

Share Document