scholarly journals Interlayer structure and magnetic field-induced orientation of modified nanoclays in polymer aqueous solution

Heliyon ◽  
2019 ◽  
Vol 5 (9) ◽  
pp. e02421 ◽  
Author(s):  
Min Kwan Kang ◽  
Eun Jung Cha ◽  
Hyun Hoon Song ◽  
Yang Ho Na
2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Emanuele Calabrò ◽  
Salvatore Magazù

FTIR spectroscopy was used to investigate the alterations of the vibration bands in the mid-infrared region of Polyethylene oxide in aqueous solution at 25 mg/mL concentration under exposure up to 4 h to a static magnetic field at 200 mT. FTIR spectroscopic analysis of PEO solution in the range 3500–1000 cm−1 evidenced the stretching vibrations of ether band, C–H symmetric-antisymmetric and bending vibrations of methylene groups, and the C–O–C stretching band. A significant decrease in intensity of symmetric and asymmetric stretching CH2 vibration bands occurred after 2 h and 4 h of exposure, followed by a significant decrease in intensity of scissoring bending in plane CH2 vibration around 1465 cm−1. Finally, the C–O–C stretching band around 1080 cm−1 increased in intensity after 4 h of exposure. This result can be attributed to the increase of formation of the intermolecular hydrogen bonding that occurred in PEO aqueous solution after SMF exposure, due to the reorientation of PEO chain after exposure to SMF. In this scenario, the observed decrease in intensity of CH2 vibration bands can be understood as well considering that the reorientation of PEO chain under the applied SMF induces PEO demicellization.


Biomaterials ◽  
1999 ◽  
Vol 20 (16) ◽  
pp. 1501-1511 ◽  
Author(s):  
Emma F. Murphy ◽  
Joseph L. Keddie ◽  
Jian R. Lu ◽  
Jason Brewer ◽  
Jeremy Russell

2016 ◽  
Vol 7 ◽  
pp. 990-994 ◽  
Author(s):  
Xiaoyu Li ◽  
Lijuan Sun ◽  
Hu Wang ◽  
Kenan Xie ◽  
Qin Long ◽  
...  

In contrast to the majority of related experiments, which are carried out in organic solvents at high temperatures and pressures, cobalt nanowires were synthesized by chemical reduction in aqueous solution with the assistance of polyvinylpyrrolidone (PVP) as surfactant under moderate conditions for the first time, while an external magnetic field of 40 mT was applied. Uniform linear cobalt nanowires with relatively smooth surfaces and firm structure were obtained and possessed an average diameter of about 100 nm with a coating layer of PVP. By comparison, the external magnetic field and PVP were proven to have a crucial influence on the morphology and the size of the synthesized cobalt nanowires. The prepared cobalt nanowires are crystalline and mainly consist of cobalt as well as a small amount of platinum. Magnetic measurements showed that the resultant cobalt nanowires were ferromagnetic at room temperature. The saturation magnetization (M s) and the coercivity (H c) were 112.00 emu/g and 352.87 Oe, respectively.


Author(s):  
Weihua Cai ◽  
Yongyao Li ◽  
Yue Wang ◽  
Xin Zheng ◽  
Mengsheng Zhu

In this paper, we propose a new fluid: drag-reducing-fluid-based nanofluids (DRFBN), i.e., nanoparticles are added into polymer aqueous solution. In order to investigate the flow and heat transfer characteristics of this new fluid, the Reynolds stress turbulence model and equivalent viscosity model are used in the simulations. Wall shear stress and Nusselt number (Nu) are chosen to represent the effects of drag reduction and heat enhancement respectively. The numerical studies mainly focus on the effects of different parameters on wall shear stress and Nu. The results show that comparison with water flow, DRFBN flow still has remarkable drag-reducing effect; comparison with polymer aqueous solution flow, DRFBN flow has some improvement on heat transfer. Therefore, DRFBN has duel effects: drag reduction and heat transfer enhancement. Besides, it is found that the parameters of nanoparticle volume fraction, Reynolds number and drag-reducing parameter have remarkable effects on wall shear stress and Nu of DRFBN flow.


2017 ◽  
Vol 898 ◽  
pp. 1783-1786
Author(s):  
Lei Zhang ◽  
Yi Su ◽  
Yu Lin Wu ◽  
Yao Liu ◽  
Yong Wang ◽  
...  

The viscosity of potassium dihydrogen phosphate, KH2PO4 (KDP), aqueous solution within magnetic field was studied. Experimental results showed that, the viscosity of saturated KDP solution exhibited multiple extreme values when the magnetic field intensity increased from 0 Gs to 2250 Gs. Influences of the magnetic field intensity on the viscosity of KDP solution were very complicated. It’s concerned with the temperature and the concentration of solution. As the KDP was produced from aqueous solution within magnetic field, the temperature and the concentration of solution also needed to be carefully controlled. Magnetic field with intensity values of 300 Gs, 600 Gs and 1800 Gs, all have the strong effects on the structures of KDP aqueous solution.


2008 ◽  
Author(s):  
Kazuhiko Iwai ◽  
Ippei Furuhashi ◽  
Michio Tokuyama ◽  
Irwin Oppenheim ◽  
Hideya Nishiyama

Sign in / Sign up

Export Citation Format

Share Document