scholarly journals Assessment of removal efficiency of pharmaceutical products from wastewater in Sewage Treatment Plants: A case of the Sewerage Systems Ghana Limited, Accra

Heliyon ◽  
2021 ◽  
pp. e08385
Author(s):  
Kwadwo Kodom ◽  
Francis Attiogbe ◽  
Francis Atta Kuranchie
2009 ◽  
Vol 59 (4) ◽  
pp. 779-786 ◽  
Author(s):  
Gopal Chandra Ghosh ◽  
Takashi Okuda ◽  
Naoyuki Yamashita ◽  
Hiroaki Tanaka

The occurrence and elimination of seventeen antibiotics (three macrolides: azithromycin, clarithromycin and roxithromycin; five quinolones: ciprofloxacin, enrofloxacin, levofloxacin, nalidixic acid and norfloxacin; five sulfonamides: sulfadimethoxine, sulfadimizine, sulfamerazine, sulfamethoxazole and sulfamonomethoxine; and others: tetracycline, lincomycin, salinomycin and trimethoprim) were investigated at four full-scale sewage treatment plants in Japan. The highest concentration was recorded for clarithromycin (1,129 to 4,820 ng/L) in influent, followed by azithromycin (160 to 1,347 ng/L), levofloxacin (255 to 587 ng/L) and norfloxacin (155 to 486 ng/L). A vary inconsistence picture was obtained with negative to over 90% removal. Nalidixic acid (53 to100%) exhibited higher removal efficiency followed by norfloxacin (75 to 95%), levofloxacin (40 to 90%), ciprofloxacin (60 to 83%) and enrofloxacin (38 to 74%). Among macrolides, clarithromycin (50 to 88%) and azithromycin (34 to 86%) showed relatively higher removal efficiency than roxithromycin (−32 to 59%). For most of the antibiotics removal efficiency was higher in A2O and AO based secondary treatment process than CAS process. The effect of the antibiotics on bacterial ammonia oxidation determined by oxygen uptake rate presented that there was no significant effect below 0.05 mg/L of each antibiotics. Even at the same concentration, antibiotics in mixed condition had higher inhibition effects than individuals.


Author(s):  
Angelo R. F. Pipi ◽  
Aroldo G. Magdalena ◽  
Giselda P. Giafferis ◽  
Gustavo H. R. da Silva ◽  
Marina Piacenti-Silva

2019 ◽  
Vol 5 ◽  
pp. 272-278 ◽  
Author(s):  
Dilanka N.D. Samaraweera ◽  
Xin Liu ◽  
Guangcai Zhong ◽  
Tilak Priyadarshana ◽  
Riffat Naseem Malik ◽  
...  

Author(s):  
Junwon Park ◽  
Changsoo Kim ◽  
Youngmin Hong ◽  
Wonseok Lee ◽  
Hyenmi Chung ◽  
...  

In this study, we analyzed 27 pharmaceuticals in liquid and solid phase samples collected from the unit processes of four different sewage treatment plants (STPs) to evaluate their distribution and behavior of the pharmaceuticals. The examination of the relative distributions of various categories of pharmaceuticals in the influent showed that non-steroidal anti-inflammatory drugs (NSAIDs) were the most dominant. While the relative distribution of antibiotics in the influent was not high (i.e., 3%–5%), it increased to 14%–30% in the effluent. In the four STPs, the mass load of the target pharmaceuticals was reduced by 88%–95% mainly in the biological treatment process, whereas the ratio of pharmaceuticals in waste sludge to those in the influent (w/w) was only 2%. In all the STPs, the removal efficiencies for the stimulant caffeine, NSAIDs (acetaminophen, naproxen, and acetylsalicylic acid), and the antibiotic cefradine were high; they were removed mainly by biological processes. Certain compounds, such as the NSAID ketoprofen, contrast agent iopromide, lipid regulator gemfibrozil, and antibiotic sulfamethoxazole, showed varying removal efficiencies depending on the contribution of biodegradation and sludge sorption. In addition, a quantitative meta-analysis was performed to compare the pharmaceutical removal efficiencies of the biological treatment processes in the four STPs, which were a membrane bioreactor (MBR) process, sequencing batch reactor (SBR) process, anaerobic–anoxic–oxic (A2O) process, and moving-bed biofilm reactor (MBBR) process. Among the biological processes, the removal efficiency was in the order of MBR > SBR > A2O > MBBR. Among the tertiary treatment processes investigated, powdered activated carbon showed the highest removal efficiency of 18%–63% for gemfibrozil, ibuprofen, ketoprofen, atenolol, cimetidine, and trimethoprim.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2988
Author(s):  
Sola Choi ◽  
Miyeon Kwon ◽  
Myung-Ja Park ◽  
Juhea Kim

Microplastics reach the aquatic environment through wastewater. Larger debris is removed in sewage treatment plants, but filters are not explicitly designed to retain sewage sludge’s microplastic or terrestrial soils. Therefore, the effective quantification of filtration system to mitigate microplastics is needed. To mitigate microplastics, various devices have been designed, and the removal efficiency of devices was compared. However, this study focused on identifying different fabrics that shed fewer microplastics. Therefore, in this study, fabric-specific analyses of microplastics of three different fabrics during washing and drying processes were studied. Also, the change in the generation of microplastics for each washing process of standard washing was investigated. The amount of microplastics released according to the washing process was analyzed, and the collected microplastics’ weight, length, and diameter were measured and recorded. According to the different types of yarn, the amount of microplastic fibers produced during washing and drying varied. As the washing processes proceed, the amount of microplastics gradually decreased. The minimum length (>40 µm) of micro-plastics generated were in plain-woven fabric. These results will be helpful to mitigate microplastics in the production of textiles and in selecting built-in filters, and focusing on the strict control of other parameters will be useful for the development of textile-based filters, such as washing bags.


2020 ◽  
Vol 12 (21) ◽  
pp. 9202
Author(s):  
Leticia Y. Kochi ◽  
Patricia L. Freitas ◽  
Leila T. Maranho ◽  
Philippe Juneau ◽  
Marcelo P. Gomes

There is growing concern among health institutions worldwide to supply clean water to their populations, especially to more vulnerable communities. Although sewage treatment systems can remove most contaminants, they are not efficient at removing certain substances that can be detected in significant quantities even after standard treatments. Considering the necessity of perfecting techniques that can remove waterborne contaminants, constructed wetland systems have emerged as an effective bioremediation solution for degrading and removing contaminants. In spite of their environmentally friendly appearance and efficiency in treating residual waters, one of the limiting factors to structure efficient artificial wetlands is the choice of plant species that can both tolerate and remove contaminants. For sometimes, the chosen plants composing a system were not shown to increase wetland performance and became a problem since the biomass produced must have appropriated destination. We provide here an overview of the use and role of aquatic macrophytes in constructed wetland systems. The ability of plants to remove metals, pharmaceutical products, pesticides, cyanotoxins and nanoparticles in constructed wetlands were compared with the removal efficiency of non-planted systems, aiming to evaluate the capacity of plants to increase the removal efficiency of the systems. Moreover, this review also focuses on the management and destination of the biomass produced through natural processes of water filtration. The use of macrophytes in constructed wetlands represents a promising technology, mainly due to their efficiency of removal and the cost advantages of their implantation. However, the choice of plant species composing constructed wetlands should not be only based on the plant removal capacity since the introduction of invasive species can become an ecological problem.


2021 ◽  
Vol 43 (5) ◽  
pp. 367-376
Author(s):  
Gi-Chang Lee ◽  
Yeong-Jin Park ◽  
Kwi-Hwa Kang ◽  
Mi-Ok Jung ◽  
Dong-Hyun Ryu ◽  
...  

Objectives : This study aimed to provide scientific information on the characteristics of organic matters in influents and effluents of sewage treatment plants (STPs) in Gyeongbuk province, Korea, for better performance of treatment processes in the plants.Methods : We selected six STPs with each capacity over 30,000 mZ3/day in Gyeongbuk province, and analyzed water quality data in influents and effluents of the plants from 2013 to 2020. Also, the removal efficiencies of pollutants were assessed with the operational data. In 2020, characteristics and origins of dissolved organic matters (DOM) in influents and effluents were investigated using the fluorescence excitation emission matrix (FEEM) analysis.Results and Discussion : The average BOD5/CODMn ratios of influents and effluents from the STPs were 1.60 and 0.27, respectively. High variability in BOD5/CODMn ratios was observed for both influents and effluents. The CODMn/TOC ratios of the influents and effluents were the same with an average of 1.6. Although the biological treatment process was different for each STP, the organic matter removal efficiency was similar, and the TOC removal efficiency was 86.5~91.7%. The representative spectra of DOM identified through FEEM analysis was peak C (humic-acid like substance) region, and under the same carbon concentration (2 mg-C/L) the fluorescence intensity of effluents was stronger than influents possibly due to the influence of soluble microbial products (SMP). It was found that DOM of both influent and effluent originated from microorganisms, and the difference in water quality of DOM was statistically significant.Conclusions : The characteristics and fate of organic matters in influents and effluents of the six STPs were similar regardless of plant location. The results of this study can be used as basic information to efficiently control organic matters in the STPs.


Sign in / Sign up

Export Citation Format

Share Document