scholarly journals Effects of cultivar resistance and chemical seed treatments on Fusarium head blight and bead wheat yield-related parameters under field condition in southern Ethiopia

Heliyon ◽  
2021 ◽  
pp. e08659
Author(s):  
Getachew Gudero Mengesha ◽  
Shiferaw Mekonnen Abebe ◽  
Asaminew Amare Mekonnen ◽  
Abate G/Mikael Esho ◽  
Zerhun Tomas Lera ◽  
...  
2010 ◽  
Vol 100 (2) ◽  
pp. 160-171 ◽  
Author(s):  
P. A. Paul ◽  
M. P. McMullen ◽  
D. E. Hershman ◽  
L. V. Madden

Multivariate random-effects meta-analyses were conducted on 12 years of data from 14 U.S. states to determine the mean yield and test-weight responses of wheat to treatment with propiconazole, prothioconazole, tebuconazole, metconazole, and prothioconazole+tebuconazole. All fungicides led to a significant increase in mean yield and test weight relative to the check (D; P < 0.001). Metconazole resulted in the highest overall yield increase, with a D of 450 kg/ha, followed by prothioconazole+tebuconazole (444.5 kg/ha), prothioconazole (419.1 kg/ha), tebuconazole (272.6 kg/ha), and propiconazole (199.6 kg/ha). Metconazole, prothioconazole+tebuconazole, and prothioconazole also resulted in the highest increases in test weight, with D values of 17.4 to 19.4 kg/m3, respectively. On a relative scale, the best three fungicides resulted in an overall 13.8 to 15.0% increase in yield but only a 2.5 to 2.8% increase in test weight. Except for prothioconazole+tebuconazole, wheat type significantly affected the yield response to treatment; depending on the fungicide, D was 110.0 to 163.7 kg/ha higher in spring than in soft-red winter wheat. Fusarium head blight (FHB) disease index (field or plot-level severity) in the untreated check plots, a measure of the risk of disease development in a study, had a significant effect on the yield response to treatment, in that D increased with increasing FHB index. The probability was estimated that fungicide treatment in a randomly selected study will result in a positive yield increase (p+) and increases of at least 250 and 500 kg/ha (p250 and p500, respectively). For the three most effective fungicide treatments (metconazole, prothioconazole+tebuconazole, and prothioconazole) at the higher selected FHB index, p+ was very large (e.g., ≥0.99 for both wheat types) but p500 was considerably lower (e.g., 0.78 to 0.92 for spring and 0.54 to 0.68 for soft-red winter wheat); at the lower FHB index, p500 for the same three fungicides was 0.34 to 0.36 for spring and only 0.09 to 0.23 for soft-red winter wheat.


2010 ◽  
Vol 46 (No. 1) ◽  
pp. 21-26 ◽  
Author(s):  
V. Šíp ◽  
J. Chrpová ◽  
O. Veškrna ◽  
L. Bobková

Reactions to artificial infection with Fusarium graminearum isolates and a new fungicide Swing Top were studied in nine winter wheat cultivars evaluated in field experiments at two sites for three years for expression of symptoms, deoxynivalenol (DON) content in grain and grain yield. The results demonstrate a pronounced and relatively stable effect of cultivar resistance on reducing head blight, grain yield losses and contamination of grain by the mycotoxin DON. It is advantageous that the moderate level of resistance to Fusarium head blight (FHB) was detected also in two commonly grown Czech cultivars Sakura and Simila. Average fungicide efficacy for DON was 49.5% and 63.9% for a reduction in yield loss, however, it was found highly variable in different years and sites. The joint effect of cultivar resistance and fungicide treatment was 86.5% for DON and even 95.4% for reducing the yield loss. A very high risk was documented for susceptible cultivars and also the effects of medium responsive cultivars were found to be highly variable in different environments and therefore not guaranteeing sufficient protection against FHB under different conditions.


Plant Disease ◽  
2011 ◽  
Vol 95 (5) ◽  
pp. 554-560 ◽  
Author(s):  
Stephen N. Wegulo ◽  
William W. Bockus ◽  
John Hernandez Nopsa ◽  
Erick D. De Wolf ◽  
Kent M. Eskridge ◽  
...  

Fusarium head blight (FHB) or scab, incited by Fusarium graminearum, can cause significant economic losses in small grain production. Five field experiments were conducted from 2007 to 2009 to determine the effects on FHB and the associated mycotoxin deoxynivalenol (DON) of integrating winter wheat cultivar resistance and fungicide application. Other variables measured were yield and the percentage of Fusarium-damaged kernels (FDK). The fungicides prothioconazole + tebuconazole (formulated as Prosaro 421 SC) were applied at the rate of 0.475 liters/ha, or not applied, to three cultivars (experiments 1 to 3) or six cultivars (experiments 4 and 5) differing in their levels of resistance to FHB and DON accumulation. The effect of cultivar on FHB index was highly significant (P < 0.0001) in all five experiments. Under the highest FHB intensity and no fungicide application, the moderately resistant cultivars Harry, Heyne, Roane, and Truman had less severe FHB than the susceptible cultivars 2137, Jagalene, Overley, and Tomahawk (indices of 30 to 46% and 78 to 99%, respectively). Percent fungicide efficacy in reducing index and DON was greater in moderately resistant than in susceptible cultivars. Yield was negatively correlated with index, with FDK, and with DON, whereas index was positively correlated with FDK and with DON, and FDK and DON were positively correlated. Correlation between index and DON, index and FDK, and FDK and DON was stronger in susceptible than in moderately resistant cultivars, whereas the negative correlation between yield and FDK and yield and DON was stronger in moderately resistant than in susceptible cultivars. Overall, the strongest correlation was between index and DON (0.74 ≤ R ≤ 0.88, P ≤ 0.05). The results from this study indicate that fungicide efficacy in reducing FHB and DON was greater in moderately resistant cultivars than in susceptible ones. This shows that integrating cultivar resistance with fungicide application can be an effective strategy for management of FHB and DON in winter wheat.


Plant Disease ◽  
2008 ◽  
Vol 92 (9) ◽  
pp. 1339-1348 ◽  
Author(s):  
C. R. Hollingsworth ◽  
C. D. Motteberg ◽  
J. V. Wiersma ◽  
L. M. Atkinson

Spring wheat (Triticum aestivum) crop losses in the Red River Valley of Minnesota and North Dakota caused by Fusarium head blight (FHB) epidemics incited by Fusarium graminearum are common. Fungicide application is often recommended when environments promote disease development but benefits have not been fully evaluated when environment, cultivar resistance, and economic outcome are considered. Agronomic and economic characters were determined for cultivars with various resistance levels when treated with no fungicide; propiconazole at 63 g active ingredient (a.i.)/ha applied at Feekes growth stage (FGS) 2, tebuconazole at 126 g a.i./ha applied at FGS 10.51, or propiconazole at 63 g a.i./ha applied at FGS 2 followed by tebuconazole at 126 g a.i./ha applied at FGS 10.51. Revenue returned from FHB moderately susceptible (MS) cultivars was 8% greater than moderately resistant (MR) cultivars in low-disease environs but differences were not significant when disease was moderate. Deoxynivalenol accumulation in grain of MS and MR cultivars was unchanged by fungicide treatment. MS cultivars were economically more adventitious to grow than MR cultivars in both disease environments.


Plant Disease ◽  
2019 ◽  
Vol 103 (8) ◽  
pp. 1858-1864 ◽  
Author(s):  
Christina Cowger ◽  
Consuelo Arellano ◽  
David Marshall ◽  
Joshua Fitzgerald

Although there has been research on managing Fusarium head blight (FHB) in spring barley, little has been published on cultivar resistance and optimal fungicide timing for FHB management in winter barley. A 3-year (2015 to 2017) field experiment was conducted to measure FHB resistance of winter barley varieties, gauge the potential benefit from a fungicide, and help determine the optimal timing for fungicide application. The split-plot experiment took place in a misted, inoculated nursery in Raleigh, North Carolina using main plots of four winter barley cultivars (Atlantic, Endeavor, Nomini, and Thoroughbred). Three fungicide treatments were applied to subplots: prothioconazole + tebuconazole at full spike emergence, the same fungicide 6 days later, or no fungicide. The late applications significantly reduced FHB index in each of 3 years and significantly reduced deoxynivalenol (DON) in harvested grain in 2 of the 3 years. Applications at full spike emergence also yielded significant benefit in 1 of the 3 years for each parameter. Neither disease symptoms nor DON gave reason to prefer one of the fungicide timings over the other. Across the 3 years, DON ranked the cultivars Endeavor < Nomini = Thoroughbred < Atlantic. Combining the moderate resistance of Endeavor with a fungicide application and averaging the two timings resulted in a 75% DON reduction compared with unsprayed Atlantic. Taken together, our results indicate that barley growers concerned about minimizing DON should both plant moderately resistant varieties and apply fungicide if there is scab risk. During the same period, 16 commercial winter barley cultivars were tested in from three to seven Virginia and North Carolina environments each, and the DON results were compared after standardization across environments. The winter two-row malting barley cultivars Endeavor and Calypso displayed superior and robust DON resistance across environments.


2016 ◽  
Vol 106 (8) ◽  
pp. 814-823 ◽  
Author(s):  
Christina Cowger ◽  
Randy Weisz ◽  
Consuelo Arellano ◽  
Paul Murphy

Fusarium head blight (FHB) is one of the most difficult small-grain diseases to manage, due to the partial effectiveness of management techniques and the narrow window of time in which to apply fungicides profitably. The most effective management approach is to integrate cultivar resistance with FHB-specific fungicide applications; yet, when forecasted risk is intermediate, it is often unclear whether such an application will be profitable. To model the profitability of FHB management under varying conditions, we conducted a 2-year split-plot field experiment having as main plots high-yielding soft red winter wheat cultivars, four moderately resistant (MR) and three susceptible (S) to FHB. Subplots were sprayed at flowering with Prosaro or Caramba, or left untreated. The experiment was planted in seven North Carolina environments (location–year combinations); three were irrigated to promote FHB development and four were not irrigated. Response variables were yield, test weight, disease incidence, disease severity, deoxynivalenol (DON), Fusarium-damaged kernels, and percent infected kernels. Partial profits were compared in two ways: first, across low-, medium-, or high-DON environments; and second, across environment–cultivar combinations divided by risk forecast into “do spray” and “do not spray” categories. After surveying DON and test weight dockage among 21 North Carolina wheat purchasers, three typical market scenarios were used for modeling profitability: feed-wheat, flexible (feed or flour), and the flour market. A major finding was that, on average, MR cultivars were at least as profitable as S cultivars, regardless of epidemic severity or market. Fungicides were profitable in the feed-grain and flexible markets when DON was high, with MR cultivars in the flexible or flour markets when DON was intermediate, and on S cultivars aimed at the flexible market. The flour market was only profitable when FHB was present if DON levels were intermediate and cultivar resistance was combined with a fungicide. It proved impossible to use the risk forecast to predict profitability of fungicide application. Overall, the results indicated that cultivar resistance to FHB was important for profitability, an FHB-targeted fungicide expanded market options when risk was moderate or high, and the efficacy of fungicide decision-making is reduced by factors that limit the accuracy of risk forecasts.


Plant Disease ◽  
2012 ◽  
Vol 96 (7) ◽  
pp. 957-967 ◽  
Author(s):  
K. T. Willyerd ◽  
C. Li ◽  
L. V. Madden ◽  
C. A. Bradley ◽  
G. C. Bergstrom ◽  
...  

Integration of host resistance and prothioconazole + tebuconazole fungicide application at anthesis to manage Fusarium head blight (FHB) and deoxynivalenol (DON) in wheat was evaluated using data from over 40 trials in 12 U.S. states. Means of FHB index (index) and DON from up to six resistance class–fungicide management combinations per trial (susceptible treated [S_TR] and untreated [S_UT]; moderately susceptible treated [MS_TR] and untreated [MS_UT]; moderately resistant treated [MR_TR] and untreated [MR_UT]) were used in multivariate meta-analyses, and mean log response ratios across trials were estimated and transformed to estimate mean percent control ([Formula: see text]) due to the management combinations relative to S_UT. All combinations led to a significant reduction in index and DON (P < 0.001). MR_TR was the most effective combination, with a [Formula: see text] of 76% for index and 71% for DON, followed by MS_TR (71 and 58%, respectively), MR_UT (54 and 51%, respectively), S_TR (53 and 39%, respectively), and MS_UT (43 and 30%, respectively). Calculations based on the principle of treatment independence showed that the combination of fungicide application and resistance was additive in terms of percent control for index and DON. Management combinations were ranked based on percent control relative to S_UT within each trial, and nonparametric analyses were performed to determine management combination stability across environments (trials) using the Kendall coefficient of concordance (W). There was a significant concordance of management combinations for both index and DON (P < 0.001), indicating a nonrandom ranking across environments and relatively low variability in the within-environment ranking of management combinations. MR_TR had the highest mean rank (best control relative to S_UT) and was one of the most stable management combinations across environments, with low rank stability variance (0.99 for index and 0.67 for DON). MS_UT had the lowest mean rank (poorest control) but was also one of the most stable management combinations. Based on Piepho's nonparametric rank-based variance homogeneity U test, there was an interaction of management combination and environment for index (P = 0.011) but not for DON (P = 0.147), indicating that the rank ordering for index depended somewhat on environment. In conclusion, although the magnitude of percent control will likely vary among environments, integrating a single tebuconazole + prothioconazole application at anthesis with cultivar resistance will be a more effective and stable management practice for both index and DON than either approach used alone.


2019 ◽  
pp. 158-161 ◽  
Author(s):  
Batiseba Tembo

Wheat (Triticum aestivum L.) is an important food crop in Zambia. It is the second most widely grown cereal crop after maize. However, its production and productivity during summer rain season is limited by socio-economic, abiotic and biotic constraints. The socio-economic factors limiting high wheat yield are high cost of inputs, lack of improved rain-fed wheat seed, lack of affordable loans, lack of access to market information and poor mechanization. The abiotic constraints on the other hand include drought, high temperature and aluminium toxicity. Biotic constraints affecting rain-fed wheat production include various weeds, pests (aphids, grass hoppers, pink stalk borers and termites) and diseases (powderly mildew, loose smut, leaf rust, fusarium head blight and spot blotch). Termites being the most serious and destructive pest of rain-fed wheat. Spot blotch is the most devastating and widely distributed among the diseases causing high yield losses of between 7-100% followed by fusarium head blight. This review paper, looks at the factors that limit the production and productivity of rain-fed wheat among small holder farmers in Zambia.


Author(s):  
Juho Hautsalo ◽  
Satu Latvala ◽  
Outi Manninen ◽  
Minna Haapalainen ◽  
Asko Hannukkala ◽  
...  

Abstract Cultivar resistance is essential for the management of Fusarium head blight (FHB) disease in oat production. However, the breeders lack methods suitable for phenotyping disease resistance and resistance sources. In this paper we compared two oat genotypes, a rejected variety BOR31 and a landrace VIR7766, with four different traits that could reflect resistance to FHB in a greenhouse environment. Spray and point inoculations were used to inoculate Fusarium graminearum into flowering oat plants. When spray-inoculated, VIR7766 was significantly more resistant against the initial infection than BOR31, measured by the number of Fusarium-infected kernels and by DON accumulation. In the point-inoculated oats, the loss of fresh weight in the inoculated spikelet correlated well with the increasing F. graminearum biomass in the spikelet, measured six days after inoculation. However, no difference in the growth of the fungus was observed between the tested oat genotypes by point inoculation. We speculate that once the infection is established, the ability of the oat plant to resist the spread of the infection within a spikelet is low in the genotypes studied, although oat, in general, due to its panicle structure, is considered to have a high resistance against Fusarium infection.


Sign in / Sign up

Export Citation Format

Share Document