scholarly journals Managing Fusarium Head Blight in Winter Barley With Cultivar Resistance and Fungicide

Plant Disease ◽  
2019 ◽  
Vol 103 (8) ◽  
pp. 1858-1864 ◽  
Author(s):  
Christina Cowger ◽  
Consuelo Arellano ◽  
David Marshall ◽  
Joshua Fitzgerald

Although there has been research on managing Fusarium head blight (FHB) in spring barley, little has been published on cultivar resistance and optimal fungicide timing for FHB management in winter barley. A 3-year (2015 to 2017) field experiment was conducted to measure FHB resistance of winter barley varieties, gauge the potential benefit from a fungicide, and help determine the optimal timing for fungicide application. The split-plot experiment took place in a misted, inoculated nursery in Raleigh, North Carolina using main plots of four winter barley cultivars (Atlantic, Endeavor, Nomini, and Thoroughbred). Three fungicide treatments were applied to subplots: prothioconazole + tebuconazole at full spike emergence, the same fungicide 6 days later, or no fungicide. The late applications significantly reduced FHB index in each of 3 years and significantly reduced deoxynivalenol (DON) in harvested grain in 2 of the 3 years. Applications at full spike emergence also yielded significant benefit in 1 of the 3 years for each parameter. Neither disease symptoms nor DON gave reason to prefer one of the fungicide timings over the other. Across the 3 years, DON ranked the cultivars Endeavor < Nomini = Thoroughbred < Atlantic. Combining the moderate resistance of Endeavor with a fungicide application and averaging the two timings resulted in a 75% DON reduction compared with unsprayed Atlantic. Taken together, our results indicate that barley growers concerned about minimizing DON should both plant moderately resistant varieties and apply fungicide if there is scab risk. During the same period, 16 commercial winter barley cultivars were tested in from three to seven Virginia and North Carolina environments each, and the DON results were compared after standardization across environments. The winter two-row malting barley cultivars Endeavor and Calypso displayed superior and robust DON resistance across environments.

Plant Disease ◽  
2011 ◽  
Vol 95 (5) ◽  
pp. 554-560 ◽  
Author(s):  
Stephen N. Wegulo ◽  
William W. Bockus ◽  
John Hernandez Nopsa ◽  
Erick D. De Wolf ◽  
Kent M. Eskridge ◽  
...  

Fusarium head blight (FHB) or scab, incited by Fusarium graminearum, can cause significant economic losses in small grain production. Five field experiments were conducted from 2007 to 2009 to determine the effects on FHB and the associated mycotoxin deoxynivalenol (DON) of integrating winter wheat cultivar resistance and fungicide application. Other variables measured were yield and the percentage of Fusarium-damaged kernels (FDK). The fungicides prothioconazole + tebuconazole (formulated as Prosaro 421 SC) were applied at the rate of 0.475 liters/ha, or not applied, to three cultivars (experiments 1 to 3) or six cultivars (experiments 4 and 5) differing in their levels of resistance to FHB and DON accumulation. The effect of cultivar on FHB index was highly significant (P < 0.0001) in all five experiments. Under the highest FHB intensity and no fungicide application, the moderately resistant cultivars Harry, Heyne, Roane, and Truman had less severe FHB than the susceptible cultivars 2137, Jagalene, Overley, and Tomahawk (indices of 30 to 46% and 78 to 99%, respectively). Percent fungicide efficacy in reducing index and DON was greater in moderately resistant than in susceptible cultivars. Yield was negatively correlated with index, with FDK, and with DON, whereas index was positively correlated with FDK and with DON, and FDK and DON were positively correlated. Correlation between index and DON, index and FDK, and FDK and DON was stronger in susceptible than in moderately resistant cultivars, whereas the negative correlation between yield and FDK and yield and DON was stronger in moderately resistant than in susceptible cultivars. Overall, the strongest correlation was between index and DON (0.74 ≤ R ≤ 0.88, P ≤ 0.05). The results from this study indicate that fungicide efficacy in reducing FHB and DON was greater in moderately resistant cultivars than in susceptible ones. This shows that integrating cultivar resistance with fungicide application can be an effective strategy for management of FHB and DON in winter wheat.


2011 ◽  
Vol 40 (No. 3) ◽  
pp. 91-101 ◽  
Author(s):  
V. Šíp ◽  
L. Tvarůžek ◽  
J. Chrpová ◽  
S. Sýkorová ◽  
L. Leišová ◽  
...  

The results are based on field infection experiments with six spring barley cultivars registered in the Czech Republic and resistance sources Chevron and CI 4196. One of the four Fusarium isolates used for inoculations was a predominant nivalenol producer, while the other isolates were deoxynivalenol (DON) producers. Out of the other mycotoxins 3-AcDON was found in grain at a relatively higher concentration. Significant cultivar differences in DON content, examined yield traits, percentage of Fusarium colonies and percentage of non-germinating seeds were detected after inoculum spraying on two dates and mist irrigation of infected plots. When inoculated with aggressive isolate of F. culmorum Chevron and CI 4196 cvs. showed high resistance and the cultivars Jersey, Olbram and Scarlett moderate resistance to DON accumulation in grain. Treatment with fungicide Horizon 250 EW (active ingredient tebuconazole) led on average to a 52.5% reduction of DON content, but the efficacy of fungicide treatment was highly influenced by year and cultivar. Fungicide treatment did not have a significant effect on grain weight per spike and, in general, the influence of infection on examined yield traits was low in these experiments. DON content was closely related only with the parameter C<sub>T </sub>Fus (transformed) from quantitative real time PCR analysis. Using the developed PCR system it was possible to specify clearly cultivar responses to infection and effects of fungicide treatment on DON content. &nbsp;


2011 ◽  
Vol 47 (No. 2) ◽  
pp. 58-63 ◽  
Author(s):  
J. Chrpová ◽  
V. Šíp ◽  
L. Štočková ◽  
L. Stemberková ◽  
L. Tvarůžek

Fusarium head blight (FHB) is a fungal disease causing substantial yield and quality losses in barley. Genetic variation in deoxynivalenol (DON) content and and important yield traits in response to FHB were studied in 44 spring barley cultivars for two years following artificial inoculation with Fusarium culmorum under field conditions. The analysis of variance revealed that the largest effect on DON content and simultaneously on the reduction of thousand grain weight and grain weight per spike were due to the environmental conditions of the year, while the visual disease symptoms depended on the cultivars to a larger extent. All these traits were significantly interrelated. The most resistant cultivars Murasski mochi, Nordic, Krasnodarskij 35, Krasnodarskij 95, Nordus, and Usurijskij 8, together with the resistant check Chevron, showed the lowest DON content, the lowest expression of disease symptoms and the lowest reduction of TGW and GWS. However, most spring barley cultivars registered in the Czech Republic in recent years expressed susceptibility or medium resistance and were considerably affected by the disease. This increases the importance of breeding barley for resistance to FHB.


Plant Disease ◽  
2008 ◽  
Vol 92 (8) ◽  
pp. 1164-1170 ◽  
Author(s):  
Megumi Yoshida ◽  
Takashi Nakajima ◽  
Michiyoshi Arai ◽  
Fumihiko Suzuki ◽  
Kenta Tomimura

Fungicide application is one measure available to reduce the risk of Fusarium head blight (FHB) and mycotoxin contamination in barley. The stage at or near anthesis, or at full head emergence, is generally thought to be optimal for fungicide application, regardless of cultivar. However, we have previously found that the most critical time for Fusarium graminearum infection and mycotoxin accumulation in barley differs among cultivars. Whereas chasmogamous (open-flowering) cultivars were most susceptible at anthesis, cleistogamous (closed-flowering) cultivars were considerably resistant at anthesis but became susceptible after ‘spent’ anther extrusion. Therefore, this study evaluated the effect of the timing of fungicide application on FHB and mycotoxin (deoxynivalenol and nivalenol) accumulation in cleistogamous barley. Thiophanate-methyl fungicide was applied at different developmental stages, from before anthesis to 30 days after anthesis (DAA), under artificial inoculation conditions in the field in which inoculum spores were provided throughout the testing period. As expected, the optimal timing for chemical control of FHB and mycotoxin accumulation was the time around the beginning of spent anther extrusion rather than at anthesis. Later application, as late as 30 DAA, was also effective in controlling mycotoxin accumulation, although it was not effective in controlling disease levels.


2016 ◽  
Vol 106 (8) ◽  
pp. 814-823 ◽  
Author(s):  
Christina Cowger ◽  
Randy Weisz ◽  
Consuelo Arellano ◽  
Paul Murphy

Fusarium head blight (FHB) is one of the most difficult small-grain diseases to manage, due to the partial effectiveness of management techniques and the narrow window of time in which to apply fungicides profitably. The most effective management approach is to integrate cultivar resistance with FHB-specific fungicide applications; yet, when forecasted risk is intermediate, it is often unclear whether such an application will be profitable. To model the profitability of FHB management under varying conditions, we conducted a 2-year split-plot field experiment having as main plots high-yielding soft red winter wheat cultivars, four moderately resistant (MR) and three susceptible (S) to FHB. Subplots were sprayed at flowering with Prosaro or Caramba, or left untreated. The experiment was planted in seven North Carolina environments (location–year combinations); three were irrigated to promote FHB development and four were not irrigated. Response variables were yield, test weight, disease incidence, disease severity, deoxynivalenol (DON), Fusarium-damaged kernels, and percent infected kernels. Partial profits were compared in two ways: first, across low-, medium-, or high-DON environments; and second, across environment–cultivar combinations divided by risk forecast into “do spray” and “do not spray” categories. After surveying DON and test weight dockage among 21 North Carolina wheat purchasers, three typical market scenarios were used for modeling profitability: feed-wheat, flexible (feed or flour), and the flour market. A major finding was that, on average, MR cultivars were at least as profitable as S cultivars, regardless of epidemic severity or market. Fungicides were profitable in the feed-grain and flexible markets when DON was high, with MR cultivars in the flexible or flour markets when DON was intermediate, and on S cultivars aimed at the flexible market. The flour market was only profitable when FHB was present if DON levels were intermediate and cultivar resistance was combined with a fungicide. It proved impossible to use the risk forecast to predict profitability of fungicide application. Overall, the results indicated that cultivar resistance to FHB was important for profitability, an FHB-targeted fungicide expanded market options when risk was moderate or high, and the efficacy of fungicide decision-making is reduced by factors that limit the accuracy of risk forecasts.


Plant Disease ◽  
2012 ◽  
Vol 96 (7) ◽  
pp. 957-967 ◽  
Author(s):  
K. T. Willyerd ◽  
C. Li ◽  
L. V. Madden ◽  
C. A. Bradley ◽  
G. C. Bergstrom ◽  
...  

Integration of host resistance and prothioconazole + tebuconazole fungicide application at anthesis to manage Fusarium head blight (FHB) and deoxynivalenol (DON) in wheat was evaluated using data from over 40 trials in 12 U.S. states. Means of FHB index (index) and DON from up to six resistance class–fungicide management combinations per trial (susceptible treated [S_TR] and untreated [S_UT]; moderately susceptible treated [MS_TR] and untreated [MS_UT]; moderately resistant treated [MR_TR] and untreated [MR_UT]) were used in multivariate meta-analyses, and mean log response ratios across trials were estimated and transformed to estimate mean percent control ([Formula: see text]) due to the management combinations relative to S_UT. All combinations led to a significant reduction in index and DON (P < 0.001). MR_TR was the most effective combination, with a [Formula: see text] of 76% for index and 71% for DON, followed by MS_TR (71 and 58%, respectively), MR_UT (54 and 51%, respectively), S_TR (53 and 39%, respectively), and MS_UT (43 and 30%, respectively). Calculations based on the principle of treatment independence showed that the combination of fungicide application and resistance was additive in terms of percent control for index and DON. Management combinations were ranked based on percent control relative to S_UT within each trial, and nonparametric analyses were performed to determine management combination stability across environments (trials) using the Kendall coefficient of concordance (W). There was a significant concordance of management combinations for both index and DON (P < 0.001), indicating a nonrandom ranking across environments and relatively low variability in the within-environment ranking of management combinations. MR_TR had the highest mean rank (best control relative to S_UT) and was one of the most stable management combinations across environments, with low rank stability variance (0.99 for index and 0.67 for DON). MS_UT had the lowest mean rank (poorest control) but was also one of the most stable management combinations. Based on Piepho's nonparametric rank-based variance homogeneity U test, there was an interaction of management combination and environment for index (P = 0.011) but not for DON (P = 0.147), indicating that the rank ordering for index depended somewhat on environment. In conclusion, although the magnitude of percent control will likely vary among environments, integrating a single tebuconazole + prothioconazole application at anthesis with cultivar resistance will be a more effective and stable management practice for both index and DON than either approach used alone.


Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1407-1421 ◽  
Author(s):  
Jorge David Salgado ◽  
Laurence V. Madden ◽  
Pierce A. Paul

Fusarium head blight (FHB), a fungal disease of wheat caused by Fusarium graminearum, and its associated toxins, particularly deoxynivalenol (DON), are best managed by integrating multiple strategies. Experiments were established in 2011 and 2013 to evaluate the effects of integrating cultivar resistance, fungicide application, and grain harvesting strategy on FHB index (IND; field severity), DON, grain yield (YLD), and grain test weight (TW; weight per unit volume). Plots of two moderately resistant and two susceptible cultivars were either treated with 19% tebuconazole + 19% prothioconazole or left untreated, and then inoculated with F. graminearum. IND was rated as the mean percentage of diseased spikelets per spike. Separate subsets of the plots of each cultivar–treatment combination were harvested with one of two combine harvester configuration: C1 (the default, set at a fan speed of 1,375 rpm and a shutter opening of 70 mm) and C4 (modified, with the same fan speeds but a wider shutter opening of 90 mm). YLD and TW data were collected, and grain samples were rated for percent Fusarium-damaged kernels (FDK) and tested for DON. Results from linear mixed-model analyses showed that the cultivar–treatment interaction was significant for all FHB-related responses, with the magnitude of the difference in mean arcsine-square-root-transformed IND and FDK (arcIND and arcFDK) and log-transformed DON (logDON) between treated and untreated being higher for susceptible than moderately resistant cultivars. Plots harvested with the C4 combine configuration had significantly higher mean TW than those harvested with C1. Treated plots had significantly higher YLD and TW than untreated plots, regardless of cultivar and configuration. Relative to the reference management program (untreated, susceptible cultivar, harvested with C1), the greatest percent reduction in FDK and DON and increase in YLD was observed for programs that included moderate resistance and fungicide treatment. The greatest percent increase in TW relative to the reference was observed when C4 adjusted combine setting was integrated with resistance and fungicide. Overall, the most effective management programs all included fungicide treatment, two included moderate resistance, and two included C4 combine setting. Relative to the reference management program, these programs resulted in 30 to 51% reduction in total estimated price discount, $127 to 312 ha−1 increase in gross cash income, and economic benefit of $31 to 272 ha−1, depending on the level of FHB IND (5 to 15%), grain price ($118 to 276 metric ton−1), and fungicide application cost ($40 to 96 ha−1).


2013 ◽  
Vol 103 (12) ◽  
pp. 1252-1259 ◽  
Author(s):  
A. Linkmeyer ◽  
M. Götz ◽  
L. Hu ◽  
S. Asam ◽  
M. Rychlik ◽  
...  

Breeding for resistance is a key task to control Fusarium head blight (FHB), a devastating disease of small cereals leading to economic losses and grain contamination with mycotoxins harmful for humans and animals. In the present work, FHB resistance of the six-rowed spring barley ‘Chevron’ to FHB in Germany was compared with those of adapted German spring barley cultivars. Both under natural infection conditions and after spray inoculation with conidia of Fusarium culmorum, F. sporotrichioides, and F. avenaceum under field conditions, Chevron showed a high level of quantitative resistance to the infection and contamination of grain with diverse mycotoxins. This indicates that Chevron is not only a little susceptible to deoxynivalenol-producing Fusarium spp. but also to Fusarium spp. producing type A trichothecenes and enniatins. Monitoring the initial infection course of F. culmorum on barley lemma tissue by confocal laser-scanning microscopy provided evidence that FHB resistance of Chevron is partially mediated by a preformed penetration resistance, because direct penetration of floral tissue by F. culmorum was observed rarely on Chevron but was common on susceptible genotypes. Alternatively, F. culmorum penetrated Chevron lemma tissue via stomata, which was unusual for susceptible genotypes. We generated double-haploid barley populations segregating for the major FHB resistance quantitative trait loci (QTL) Qrgz-2H-8 of Chevron. Subsequently, we characterized these populations by spray inoculation with conidia of F. culmorum and F. sporotrichioides. This suggested that Qrgz-2H-8 was functional in the genetic background of European elite barley cultivars. However, the degree of achieved resistance was very low when compared with quantitative resistance of the QTL donor Chevron, and the introgression of Qrgz-2H-8 was not sufficient to mediate the cellular resistance phenotype of Chevron in the European backgrounds.


2010 ◽  
Vol 46 (No. 1) ◽  
pp. 21-26 ◽  
Author(s):  
V. Šíp ◽  
J. Chrpová ◽  
O. Veškrna ◽  
L. Bobková

Reactions to artificial infection with Fusarium graminearum isolates and a new fungicide Swing Top were studied in nine winter wheat cultivars evaluated in field experiments at two sites for three years for expression of symptoms, deoxynivalenol (DON) content in grain and grain yield. The results demonstrate a pronounced and relatively stable effect of cultivar resistance on reducing head blight, grain yield losses and contamination of grain by the mycotoxin DON. It is advantageous that the moderate level of resistance to Fusarium head blight (FHB) was detected also in two commonly grown Czech cultivars Sakura and Simila. Average fungicide efficacy for DON was 49.5% and 63.9% for a reduction in yield loss, however, it was found highly variable in different years and sites. The joint effect of cultivar resistance and fungicide treatment was 86.5% for DON and even 95.4% for reducing the yield loss. A very high risk was documented for susceptible cultivars and also the effects of medium responsive cultivars were found to be highly variable in different environments and therefore not guaranteeing sufficient protection against FHB under different conditions.


Sign in / Sign up

Export Citation Format

Share Document