The Impact of Single Amino Acid Substitutions in CD3γ on the CD3ϵγ Interaction and T-Cell Receptor–CD3 Complex Formation

2006 ◽  
Vol 67 (8) ◽  
pp. 579-588 ◽  
Author(s):  
E.A.J. Thomassen ◽  
E.H.A. Dekking ◽  
A. Thompson ◽  
K.L. Franken ◽  
Ö. Sanal ◽  
...  
1992 ◽  
Vol 175 (6) ◽  
pp. 1553-1563 ◽  
Author(s):  
E A Nalefski ◽  
S Kasibhatla ◽  
A Rao

We have identified residues on a T cell receptor (TCR) alpha chain that are important for interaction with antigen/major histocompatibility complex (MHC). Using site-directed mutagenesis, we modified DNA encoding the postulated antigen/MHC binding loops on the TCR alpha chain expressed by the T cell clone D5, which recognizes p-azobenzenearsonate-conjugated antigens presented by cells bearing I-Ad. These variant TCR alpha chains were expressed in conjunction with the wild-type D5 TCR beta chain on the surface of hybridoma cells, and were tested for the ability to recognize hapten-conjugated antigens presented by I-Ad. Individual amino acid substitutions in each of the three antigen binding loops (alpha 1, alpha 2, alpha 3) of the D5 TCR alpha chain affected antigen recognition, demonstrating that all three loops are important in recognition of antigen/MHC. A subset of the single amino acid substitutions completely eliminated antigen recognition, thus identifying the residues that are particularly important in the recognition of antigenic peptide/MHC by the D5 TCR. Because the wild-type D5 TCR recognizes arsonate and certain structural analogues of arsonate conjugated to a variety of protein antigens, we were able to test whether the TCR substitutions affected the specificity of the D5 TCR for hapten or carrier antigen. One substitution introduced into antigen binding loop alpha 3 markedly altered the pattern of carrier recognition. Together, these results verify the Ig model for the TCR and are consistent with the proposition that residues forming the first and second antigen binding loops of the TCR contact the MHC, while those forming the third loop contact mainly antigenic peptides.


1991 ◽  
Vol 21 (2) ◽  
pp. 483-488 ◽  
Author(s):  
Toshiyasu Hirama ◽  
Sunao Takeshita ◽  
Yuji Matsubayashi ◽  
Michihiro Iwashiro ◽  
Tohru Masuda ◽  
...  

2010 ◽  
Vol 207 (7) ◽  
pp. 1555-1567 ◽  
Author(s):  
Stephanie Gras ◽  
Zhenjun Chen ◽  
John J. Miles ◽  
Yu Chih Liu ◽  
Melissa J. Bell ◽  
...  

In comparison to human leukocyte antigen (HLA) polymorphism, the impact of allelic sequence variation within T cell receptor (TCR) loci is much less understood. Particular TCR loci have been associated with autoimmunity, but the molecular basis for this phenomenon is undefined. We examined the T cell response to an HLA-B*3501–restricted epitope (HPVGEADYFEY) from Epstein-Barr virus (EBV), which is frequently dominated by a TRBV9*01+ public TCR (TK3). However, the common allelic variant TRBV9*02, which differs by a single amino acid near the CDR2β loop (Gln55→His55), was never used in this response. The structure of the TK3 TCR, its allelic variant, and a nonnaturally occurring mutant (Gln55→Ala55) in complex with HLA-B*3501HPVGEADYFEY revealed that the Gln55→His55 polymorphism affected the charge complementarity at the TCR–peptide-MHC interface, resulting in reduced functional recognition of the cognate and naturally occurring variants of this EBV peptide. Thus, polymorphism in the TCR loci may contribute toward variability in immune responses and the outcome of infection.


Cell ◽  
1990 ◽  
Vol 63 (4) ◽  
pp. 717-728 ◽  
Author(s):  
Pierre-André Cazenave ◽  
Patrice N. Marche ◽  
Evelyne Jouvin-Marche ◽  
Danielle Voegtlé ◽  
Franc̊ois Bonhomme ◽  
...  

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3310-3310
Author(s):  
Anna Luise Bernhardt ◽  
Sascha Kretschmann ◽  
Judith Bausenwein ◽  
Heidi Balzer ◽  
Andreas Mackensen ◽  
...  

Abstract Introduction: The separation of graft-versus-leukemia (GvL) effect from graft-versus-host-disease (GvHD) is a major objective after allogeneic stem cell transplantation. We recently described two types of endogenous HLA class II restricted antigens depending on their behavior towards HLA-DM. While DM-resistant antigens are presented in the presence of HLA-DM, presentation of DM-sensitive antigens rely on co-expression of HLA-DO - the natural inhibitor of HLA-DM. Since the expression of HLA-DO is not upregulated by inflammatory cytokines and restricted to B-cells, dendritic cells and thymic epithelial cells, DM-sensitive antigens cannot be presented on non-hematopoietic tissues. Therefore, usage of CD4 T-cells directed against DM-sensitive antigens might allow separation of GvL from GvHD. However, it remains elusive whether immunogenicity and anti-tumorigenic potential of DM-sensitive and DM-resistant antigens have comparable properties in vivo. Methods: Therefore, we sought to create an in vivo system using a DM-sensitive and a DM-resistant variant of the same model antigen. First, we generated murine cell lines overexpressing either H2-M or H2-O (murine HLA-DM or HLA-DO, respectively) to allocate the two model antigens ovalbumin (OVA) and murine Y-chromosome antigen DBY to their category. Furthermore, we introduced one to three amino acid substitutions within the MHC II restricted T-cell epitopes of the two antigens and tested DM-sensitivity or DM-resistance by T-cell activation using proliferation and IFN-g secretion as read-out in vitro. Finally, we vaccinated B6 mice with the generated epitope variants and measured expansion, phenotype and reactivity of OVA- or DBY-specific CD4 T-cells in vivo. Results: By testing T-cell recognition of OVA or DBY on murine B-cell lines overexpressing H2-M and H2-O, respectively, we could show that OVA leads to a more potent T-cell activation in the presence of H2-O demonstrating its DM-sensitive character. In contrast the wildtype epitope of DBY does not rely on H2-O expression for strong T-cell activation and was therefore assessed as DM-resistant antigen. By introducing one to three amino acid substitutions within the T-cell epitope we could generate one further DM-sensitive variant of OVA but also two DM-resistant counterparts. Likewise, we designed both DM-resistant and DM-sensitive epitope variants of murine DBY. To assess T-cell receptor avidity to our epitope variants presented on natural antigen presenting cells, titration of DM-sensitive and DM-resistant variants of the same antigen on untreated splenocytes from OVA or DBY T-cell receptor transgenic mice, respectively, were performed. We observed comparable activation of the same T-cell clone activated by either variant of the epitope as measured by proliferation and IFN-g secretion. Furthermore, upon vaccination of B6 mice with either variant of the epitope we could measure comparable expansion, phenotype, and reactivity of OVA- and DBY-specific T-cells both invivo and ex vivo. Conclusion: We successfully generated DM-sensitive and DM-resistant variants of the same epitope for the two model antigens OVA and murine DBY. With this tool we could demonstrate that DM-sensitive antigens are not inferior to their DM-resistant counterpart. Therefore, targeting DM-sensitive antigens after allogenic stem cell transplantation might be an interesting tool to improve the GvL effect with only limited GvHD. Disclosures Bernhardt: DFG TRR221/project A1 (German Research Foundation): Research Funding.


Sign in / Sign up

Export Citation Format

Share Document