scholarly journals Allelic polymorphism in the T cell receptor and its impact on immune responses

2010 ◽  
Vol 207 (7) ◽  
pp. 1555-1567 ◽  
Author(s):  
Stephanie Gras ◽  
Zhenjun Chen ◽  
John J. Miles ◽  
Yu Chih Liu ◽  
Melissa J. Bell ◽  
...  

In comparison to human leukocyte antigen (HLA) polymorphism, the impact of allelic sequence variation within T cell receptor (TCR) loci is much less understood. Particular TCR loci have been associated with autoimmunity, but the molecular basis for this phenomenon is undefined. We examined the T cell response to an HLA-B*3501–restricted epitope (HPVGEADYFEY) from Epstein-Barr virus (EBV), which is frequently dominated by a TRBV9*01+ public TCR (TK3). However, the common allelic variant TRBV9*02, which differs by a single amino acid near the CDR2β loop (Gln55→His55), was never used in this response. The structure of the TK3 TCR, its allelic variant, and a nonnaturally occurring mutant (Gln55→Ala55) in complex with HLA-B*3501HPVGEADYFEY revealed that the Gln55→His55 polymorphism affected the charge complementarity at the TCR–peptide-MHC interface, resulting in reduced functional recognition of the cognate and naturally occurring variants of this EBV peptide. Thus, polymorphism in the TCR loci may contribute toward variability in immune responses and the outcome of infection.

2006 ◽  
Vol 67 (8) ◽  
pp. 579-588 ◽  
Author(s):  
E.A.J. Thomassen ◽  
E.H.A. Dekking ◽  
A. Thompson ◽  
K.L. Franken ◽  
Ö. Sanal ◽  
...  

2021 ◽  
Vol 6 (66) ◽  
Author(s):  
Puspa Thapa ◽  
Rebecca S. Guyer ◽  
Alexander Y. Yang ◽  
Christopher A. Parks ◽  
Todd M. Brusko ◽  
...  

2020 ◽  
Vol 21 (24) ◽  
pp. 9690
Author(s):  
Yong-Bin Cho ◽  
In-Gu Lee ◽  
Yong-Hyun Joo ◽  
So-Hee Hong ◽  
Young-Jin Seo

Viral infectious diseases are a significant burden on public health and the global economy, and new viral threats emerge continuously. Since CD4+ and CD8+ T cell responses are essential to eliminating viruses, it is important to understand the underlying mechanisms of anti-viral T cell-mediated immunopathogenesis during viral infections. Remarkable progress in transgenic (Tg) techniques has enabled scientists to more readily understand the mechanisms of viral pathogenesis. T cell receptor (TCR) Tg mice are extremely useful in studying T cell-mediated immune responses because the majority of T cells in these mice express specific TCRs for partner antigens. In this review, we discuss the important studies utilizing TCR Tg mice to unveil underlying mechanisms of T cell-mediated immunopathogenesis during viral infections.


2020 ◽  
Vol 11 ◽  
Author(s):  
Qing Liang ◽  
Meina Zhang ◽  
Yudi Hu ◽  
Wei Zhang ◽  
Ping Zhu ◽  
...  

Gut microbiota (GM) modifies the intrahepatic immune microenvironment, but the underlying mechanisms remain poorly understood. Liver fibrosis-associated imprinting is predicted to be reflected in GM. This study investigated the link between GM and the intrahepatic T cell receptor (TCR) immune repertoire (IR), and whether GM modulates the intrahepatic immune microenvironment via TCR IR during liver fibrosis. We analyzed the correlation between GM and TCR IR during liver fibrogenesis. Accordingly, 16S rRNA gene sequencing (16S-seq) and bulk immune repertoire sequencing (IR-seq) were performed to characterize GM and intrahepatic TCR IR. Fecal microbial transplant (FMT) and TCRβ knockout (TcrbKO) mouse models were employed to determine the biological link between GM and TCR IR in liver fibrosis. We found that GM and intrahepatic TCR IR are highly correlated, with both showing reduced diversity and centralized distribution during liver fibrosis. The restoration of normal intestinal microbiota may reshape intrahepatic TCR IR and delay liver fibrosis. Interestingly, TCR IR ablation abrogated the impact of GM on liver fibrogenesis. Furthermore, GM modulated hepatic stellate cell (HSC) activation via TCR IR-mediated intrahepatic immune milieu. Our study demonstrates that GM, which exhibits cross-talk with the intrahepatic TCR IR, influences the intrahepatic immune microenvironment and liver fibrosis progression.


2006 ◽  
Vol 8 (1) ◽  
pp. 84-91 ◽  
Author(s):  
Jr-Wen Shui ◽  
Jonathan S Boomer ◽  
Jin Han ◽  
Jun Xu ◽  
Gregory A Dement ◽  
...  

2020 ◽  
Author(s):  
Julian Dekker ◽  
Jacques J.M. van Dongen ◽  
Marcel J.T. Reinders ◽  
Indu Khatri

AbstractT-cell receptor (TR) germline alleles are arranged, organized and made available to the research community by the IMGT database. This state-of-the-art database, however, does not provide information regarding population specificity and allelic frequencies of the genes all four human TR loci (TRA, TRB, TRG and TRD). The specificity of allelic variants to different human populations can, however, be a rich source of information when studying the genetic basis of population-specific immune responses in vaccination and disease. To make TR germline alleles available for such population-specific studies, we meticulously identified true germline alleles enriched with complete TR allele sequences and their frequencies across 26 different human populations, profiled by “1,000 Genomes data”. We identified 205 TRAV, 249 TRBV, 16 TRGV and 5 TRDV germline alleles supported by at least four haplotypes (= minimum of two individuals). The diversity of germline allelic variants in the TR loci is highest in Africans followed by Non-African populations. A majority of the Non-African alleles are specific to the Asian populations, suggesting a diverse profile of TR germline alleles in different human populations. Interestingly, the alleles known in the IMGT database are frequent and common across all the superpopulations. We believe that this new set of genuine germline TR sequences represents a valuable new resource which we have made available through the new population-matched TR (pmTR) database, accessible via https://pmtrig.lumc.nl/.


Sign in / Sign up

Export Citation Format

Share Document