scholarly journals Analysis of heat transfer transition of thermally driven flow within a square enclosure under effects of inclined magnetic field

Author(s):  
Chuan-Chieh Liao ◽  
Wen-Ken Li ◽  
Chia-Ching Chu
2021 ◽  
Vol 13 (9) ◽  
pp. 5086
Author(s):  
Fatih Selimefendigil ◽  
Hakan F. Oztop ◽  
Ali J. Chamkha

Single and double impinging jets heat transfer of non-Newtonian power law nanofluid on a partly curved surface under the inclined magnetic field effects is analyzed with finite element method. The numerical work is performed for various values of Reynolds number (Re, between 100 and 300), Hartmann number (Ha, between 0 and 10), magnetic field inclination (γ, between 0 and 90), curved wall aspect ratio (AR, between 01. and 1.2), power law index (n, between 0.8 and 1.2), nanoparticle volume fraction (ϕ, between 0 and 0.04) and particle size in nm (dp, between 20 and 80). The amount of rise in average Nusselt (Nu) number with Re number depends upon the power law index while the discrepancy between the Newtonian fluid case becomes higher with higher values of power law indices. As compared to case with n = 1, discrepancy in the average Nu number are obtained as −38% and 71.5% for cases with n = 0.8 and n = 1.2. The magnetic field strength and inclination can be used to control the size and number or vortices. As magnetic field is imposed at the higher strength, the average Nu reduces by about 26.6% and 7.5% for single and double jets with n greater than 1 while it increases by about 4.78% and 12.58% with n less than 1. The inclination of magnetic field also plays an important role on the amount of enhancement in the average Nu number for different n values. The aspect ratio of the curved wall affects the flow field slightly while the average Nu variation becomes 5%. Average Nu number increases with higher solid particle volume fraction and with smaller particle size. At the highest particle size, it is increased by about 14%. There is 7% variation in the average Nu number when cases with lowest and highest particle size are compared. Finally, convective heat transfer performance modeling with four inputs and one output is successfully obtained by using Adaptive Neuro-Fuzzy Interface System (ANFIS) which provides fast and accurate prediction results.


2019 ◽  
Vol 29 (4) ◽  
pp. 1466-1489 ◽  
Author(s):  
Mohammadhossein Hajiyan ◽  
Shohel Mahmud ◽  
Mohammad Biglarbegian ◽  
Hussein A. Abdullah ◽  
A. Chamkha

Purpose The purpose of this paper is to investigate the convective heat transfer of magnetic nanofluid (MNF) inside a square enclosure under uniform magnetic fields considering nonlinearity of magnetic field-dependent thermal conductivity. Design/methodology/approach The properties of the MNF (Fe3O4+kerosene) were described by polynomial functions of magnetic field-dependent thermal conductivity. The effect of the transverse magnetic field (0 < H < 105), Hartmann Number (0 < Ha < 60), Rayleigh number (10 <Ra <105) and the solid volume fraction (0 < φ < 4.7%) on the heat transfer performance inside the enclosed space was examined. Continuity, momentum and energy equations were solved using the finite element method. Findings The results show that the Nusselt number increases when the Rayleigh number increases. In contrast, the convective heat transfer rate decreases when the Hartmann number increases due to the strong magnetic field which suppresses the buoyancy force. Also, a significant improvement in the heat transfer rate is observed when the magnetic field is applied and φ = 4.7% (I = 11.90%, I = 16.73%, I = 10.07% and I = 12.70%). Research limitations/implications The present numerical study was carried out for a steady, laminar and two-dimensional flow inside the square enclosure. Also, properties of the MNF are assumed to be constant (except thermal conductivity) under magnetic field. Practical implications The results can be used in thermal storage and cooling of electronic devices such as lithium-ion batteries during charging and discharging processes. Originality/value The accuracy of results and heat transfer enhancement having magnetic field-field-dependent thermal conductivity are noticeable. The results can be used for different applications to improve the heat transfer rate and enhance the efficiency of a system.


2021 ◽  
Author(s):  
Hojjat Khozeymeh-Nezhad ◽  
Yaser Basati ◽  
Hamid Niazmand

Abstract In the present paper for the first time, a Lattice Boltzmann Simulation is performed to analyze the simultaneous effects of a hot rotating elliptic cylinder and the magnetic field on the mixed convection flow in a square enclosure. Complicated flow patterns and isotherms plots are found and analyzed in the concentric annulus between the internal elliptic cylinder and the outer square enclosure. Results indicate that increasing the Reynolds number, instantaneous averaged Nusselt number of the enclosure and its oscillation amplitude increase, while decrease with increasing the Hartmann number especially at its lower values. Furthermore, response surface method is adopted to find the optimal location of the elliptic cylinder. Response surface optimization results reveal that the average Nusselt number shows a decreasing-increasing trend with increasing both non-dimensional parameters of cylinder center (Xc,Yc) Finally, the optimal location of the elliptic cylinder for the maximum heat transfer rate is obtained as Xc=0.65 and Yc=0.35. Moreover, a comparative study is performed to evaluate the heat transfer effects of the elliptical cylinder rotation as compared to circular cylinder. It was found that the elliptical cylinder rotation has a significant effect on the heat transfer enhancement, especially at high values of Re and Ha. As an example, the heat transfer rate for the elliptical cylinder at Re=200 is increased by 13 % and 34% as compared to the circular cylinder at Ha=50 and 100, respectively.


2017 ◽  
Vol 39 (6) ◽  
pp. 511-525 ◽  
Author(s):  
Khamis S. Al Kalbani ◽  
Mohammad M. Rahman ◽  
Shariful Alam ◽  
Nasser Al-Salti ◽  
Ibrahim A. Eltayeb

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Seyyed Masoud Seyyedi ◽  
M. Hashemi-Tilehnoee ◽  
M. Sharifpur

The encapsulation technique of phase change materials in the nanodimension is an innovative approach to improve the heat transfer capability and solve the issues of corrosion during the melting process. This new type of nanoparticle is suspended in base fluids call NEPCMs, nanoencapsulated phase change materials. The goal of this work is to analyze the impacts of pertinent parameters on the free convection and entropy generation in an elliptical-shaped enclosure filled with NEPCMs by considering the effect of an inclined magnetic field. To reach the goal, the governing equations (energy, momentum, and mass conservation) are solved numerically by CVFEM. Currently, to overcome the low heat transfer problem of phase change material, the NEPCM suspension is used for industrial applications. Validation of results shows that they are acceptable. The results reveal that the values of N u ave descend with ascending Ha while N gen has a maximum at Ha = 16 . Also, the value of N T , MF increases with ascending Ha . The values of N u ave and N gen depend on nondimensional fusion temperature where good performance is seen in the range of 0.35 < θ f < 0.6 . Also, Nu ave increases 19.9% and ECOP increases 28.8% whereas N gen descends 6.9% when ϕ ascends from 0 to 0.06 at θ f = 0.5 . Nu ave decreases 4.95% while N gen increases by 8.65% when Ste increases from 0.2 to 0.7 at θ f = 0.35 .


2017 ◽  
Vol 7 (3) ◽  
pp. 1647-1657
Author(s):  
M. M. Keshtkar ◽  
M. Ghazanfari

This paper focuses on solving the fluid flow and heat transfer equations inside a two-dimensional square enclosure containing three hot obstacles affected by gravity and magnetic force placed on a ramp using Boltzmann method (LBM) applying multiple relaxation times (MRT). Although, the Lattice Boltzmann with MRT is a complex technique, it is a relatively new, stable, fast and high-accurate one. The main objective of this research was to numerically model the fluid flow and ultimately obtaining the velocity field, flow and temperature contour lines inside a two-dimensional enclosure. The results and their comparisons for different types of heat transfer revealed that free or forced heat transfer has a considerable impact on the heat transfer and stream lines. This can be controlled by modifying the Richardson number. It is revealed that changing the intensity of the magnetic field (Hartman number) has an appreciable effect on the heat transfer.


Sign in / Sign up

Export Citation Format

Share Document