scholarly journals Evaluation of production of Cheddar cheese from micellar casein concentrate

2020 ◽  
Vol 107 ◽  
pp. 104711
Author(s):  
Bozhao Li ◽  
David S. Waldron ◽  
John T. Tobin ◽  
Surabhi Subhir ◽  
Alan L. Kelly ◽  
...  
Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4280
Author(s):  
Rebekka Thøgersen ◽  
Kristian Leth Egsgaard ◽  
Louise Kjølbæk ◽  
Klaus Juhl Jensen ◽  
Arne Astrup ◽  
...  

This study investigated the postprandial plasma metabolome following consumption of four dairy matrices different in texture and structure: cheddar cheese (Cheese), homogenized cheddar cheese (Hom. Cheese), and micellar casein isolate (MCI) with cream (MCI Drink) or a MCI Gel. An acute, randomized, crossover trial in male participants (n = 25) with four test days was conducted. Blood samples were collected during an 8-h postprandial period after consumption of a meal similar in micro- and macronutrients containing one of the four dairy matrices, and the metabolome was analyzed using nuclear magnetic resonance (NMR) spectroscopy. A liquid dairy matrix (MCI Drink) resulted in a faster absorption of amino acids compared to products, representing either a semi-solid (MCI Gel and Hom. Cheese) or solid (Cheese) dairy matrix. For the MCI Gel, plasma concentration of acetic acid and formic acid increased approximately 2 h following consumption, while 3-hydroxybyturate and acetoacetic acid increased approximately 6 h after consumption. The structure and texture of the dairy matrix affected the postprandial absorption of amino acids, as revealed by the plasma metabolome. Our study furthermore pointed at endogenous effects associated with consumption of dairy products containing glucono-δ-lactone.


2004 ◽  
Vol 84 (6) ◽  
pp. 527-538 ◽  
Author(s):  
Vivek K. Upadhyay ◽  
Maria J. Sousa ◽  
Peter Ravn ◽  
Hans Israelsen ◽  
Alan L. Kelly ◽  
...  
Keyword(s):  

Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 898
Author(s):  
Hebatoallah Hassan ◽  
Daniel St-Gelais ◽  
Ahmed Gomaa ◽  
Ismail Fliss

Clostridium tyrobutyricum spores survive milk pasteurization and cause late blowing of cheeses and significant economic loss. The effectiveness of nisin-producing Lactococcus lactis ssp. lactis 32 as a protective strain for control the C. tyrobutyricum growth in Cheddar cheese slurry was compared to that of encapsulated nisin-A. The encapsulated nisin was more effective, with 1.0 log10 reductions of viable spores after one week at 30 °C and 4 °C. Spores were not detected for three weeks at 4 °C in cheese slurry made with 1.3% salt, or during week 2 with 2% salt. Gas production was observed after one week at 30 °C only in the control slurry made with 1.3% salt. In slurry made with the protective strain, the reduction in C. tyrobutyricum count was 0.6 log10 in the second week at 4 °C with both salt concentration. At 4 °C, nisin production started in week 2 and reached 97 µg/g after four weeks. Metabarcoding analysis targeting the sequencing of 16S rRNA revealed that the genus Lactococcus dominated for four weeks at 4 °C. In cheese slurry made with 2% salt, the relative abundance of the genus Clostridium decreased significantly in the presence of nisin or the protective strain. The results indicated that both strategies are able to control the growth of Clostridium development in Cheddar cheese slurries.


LWT ◽  
2021 ◽  
pp. 110866
Author(s):  
Wanshuang Yang ◽  
Xinyue Hao ◽  
Xiuxiu Zhang ◽  
Gengxu Zhang ◽  
Xiaodong Li ◽  
...  

1995 ◽  
Vol 58 (1) ◽  
pp. 62-69 ◽  
Author(s):  
K. ANJAN REDDY ◽  
ELMER H. MARTH

Three different split lots of Cheddar cheese curd were prepared with added sodium chloride (NaCl) potassium chloride (KCl) or mixtures of NaCl/KCl (2:1 1:1 1:2 and 3:4 all on wt/wt basis) to achieve a final salt concentration of 1.5 or 1.75%. At intervals during ripening at 3±1°C samples were plated with All-Purpose Tween (APT) and Lactobacillus Selection (LBS) agar. Isolates were obtained of bacteria that predominated on the agar media. In the first trial (Lactococcus lactis subsp. lactis plus L. lactis subsp. cremoris served as starter cultures) L. lactis subsp.lactis Lactobacillus casei and other lactobacilli were the predominant bacteria regardless of the salting treatment Received by the cheese. In the second trial (L. lactis subsp. lactis served as the starter culture) unclassified lactococci L. lactis subsp. lactis unclassified lactobacilli and L. casei predominated regardless of the salting treatment given the cheese. In the third trial (L. lactis subsp. cremoris served as the starter culture) unclassified lactococci unclassified lactobacilli L. casei and Pediococcus cerevisiae predominated regardless of the salting treatment applied to the cheese Thus use of KCl to replace some of the NaCl for salting cheese had no detectable effect on the kinds of lactic acid bacteria that developed in ripening Cheddar cheese.


2015 ◽  
Vol 98 (5) ◽  
pp. 2982-2991 ◽  
Author(s):  
Yue Zhang ◽  
Rachel Campbell ◽  
MaryAnne Drake ◽  
Qixin Zhong

Sign in / Sign up

Export Citation Format

Share Document