The determination of dynamic strength of single lap joints using the split Hopkinson pressure bar

2011 ◽  
Vol 31 (6) ◽  
pp. 541-549 ◽  
Author(s):  
Oishik Sen ◽  
Srinivasan Arjun Tekalur ◽  
Clarence Jilek
2020 ◽  
Vol 999 ◽  
pp. 83-90
Author(s):  
Xiao Ju Gao ◽  
Hasigaowa ◽  
Meng Yong Sun ◽  
Cheng Dong Liao ◽  
Wei Ping Huang ◽  
...  

SiC/B4C composite was obtained using the reaction sintering method with Si infiltration, which exhibited excellent mechanical properties. The dynamic compressive response was investigated using a Split Hopkinson pressure bar at high strain rates ranging from 0.4×103 to 1.2×103 s-1. The results show that the dynamic strength of the SiC/B4C composite obtains a peak value at a strain rate of 1000/s, while its strain increased continuously with increasing strain rate. The dynamic loading mode of SiC/B4C composite exhibited three deformation regions, including an inelastic deformation region, rapid loading region and failure region. The dynamic failure mode of SiC/B4C composite depended upon the strain rate.


2006 ◽  
Author(s):  
Glenn E. Vallee ◽  
Steven D. Army

An effective, low cost method of determining the temperature dependent dynamic response of elastomeric materials at high strain rates using the Split Hopkinson Pressure Bar (SHPB) is developed. The test system allows the determination of the dynamic modulus at temperatures up to 150°C with control of specimen temperature within ± 3°C without the use of specialized equipment or cumbersome heating and positioning fixtures often required for temperature dependent testing. The test specimen is heated using a low cost electric resistance tape, which heats the transmitter and incident bars adjacent to the specimen. A finite element analysis is performed to predict the temperature vs. time response of the test specimen, which is verified using a simple thermocouple arrangement. The dynamic stress-strain response of a nitrile elastomer, commonly used as an impact absorber, is investigated over temperatures ranging from 20°C to 110°C at strain rates between 3000/s and 3500/s. The effect of strain rate on the dynamic modulus is not significant, but the effect of temperature is dramatic. The dynamic modulus of the nitrile is reduced by more than 60% at 110°C.


2011 ◽  
Vol 194-196 ◽  
pp. 1109-1113 ◽  
Author(s):  
Bin Jia ◽  
Zheng Liang Li ◽  
Lu Cheng ◽  
Hua Chuan Yao

An experimental system of high-temperature split Hopkinson pressure bar (SHPB) was developed by combination of the split Hopkinson pressure bar (SHPB) and microwave heating system, then tests of concrete whose temperature changed from room temperature to 650°С and impact velocity from 5m/s to 12m/s were completed. Based on the test results, the dynamic strength of concrete increases with increasing impact velocity whether with high temperature or room temperature, meanwhile the dynamic strength of concrete with high temperature has the strain rate effect, but the effect keeps decreasing with temperature increasing, even at temperature above 500°С , compressive strength will not have strain rate sensitive effect any longer when strain rate surpasses a certain value. In the meantime, the strain rate hardening effect is coupled with high temperature weakening effect, but the latter has greater influence.


Author(s):  
Kaiwen Xia ◽  
Sheng Huang ◽  
Ajay Kumar Jha

The dynamic tensile strength plays a pivotal role in rock fragmentation affecting the overall economics under the present ‘Mine to Mill Concept’. In this paper, a modified SHPB technique and Brazilian test method is presented to test the dynamic tensile strength of coal, shale and sandstone rock samples collected from three opencast mines of Coal India Limited and is compared with the static strength value. The dynamic tensile strength of coal and rock is much higher than static strength and tensile strength of coal and rock samples increase with loading rate. The result shows that the dynamic strength of the coal sample is 1.5 times higher than static strength and the dynamic strength of the sandstone sample is 3 times higher than the static strength.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
O. Vasylkiv ◽  
H. Borodianska ◽  
D. Demirskyi ◽  
P. Li ◽  
T. S. Suzuki ◽  
...  

AbstractMixtures of B4C, α-AlB12 and B powders were reactively spark plasma sintered at 1800 °C. Crystalline and amorphous boron powders were used. Samples were tested for their impact behavior by the Split Hopkinson Pressure Bar method. When the ratio R = B4C/α-AlB12 ≥ 1.3 for a constant B-amount, the major phase in the samples was the orthorhombic AlB24C4, and when R < 1 the amount of AlB24C4 significantly decreased. Predictions that AlB24C4 has the best mechanical impact properties since it is the most compact and close to the ideal cubic packing among the Al-B-C phases containing B12-type icosahedra were partially confirmed. Namely, the highest values of the Vickers hardness (32.4 GPa), dynamic strength (1323 MPa), strain and toughness were determined for the samples with R = 1.3, i.e., for the samples with a high amount of AlB24C4. However, the existence of a maximum, detectable especially in the dynamic strength vs. R, indicated the additional influence of the phases and the composite’s microstructure in the samples. The type of boron does not influence the dependencies of the indicated mechanical parameters with R, but the curves are shifted to slightly higher values for the samples in which amorphous boron was used.


Sign in / Sign up

Export Citation Format

Share Document