Piperacillin-Tazobactam-Resistant/Third-Generation Cephalosporin-Susceptible Escherichia coli and Klebsiella pneumoniae Isolates: Resistance Mechanisms and In vitro-In vivo Discordance

2020 ◽  
Vol 55 (3) ◽  
pp. 105885 ◽  
Author(s):  
Kamilia Abdelraouf ◽  
Kalyan D. Chavda ◽  
Michael J. Satlin ◽  
Stephen G. Jenkins ◽  
Barry N. Kreiswirth ◽  
...  
2007 ◽  
Vol 51 (4) ◽  
pp. 1481-1486 ◽  
Author(s):  
C. Andrew DeRyke ◽  
Mary Anne Banevicius ◽  
Hong Wei Fan ◽  
David P. Nicolau

ABSTRACT The purpose of this study was to examine the in vivo efficacies of meropenem and ertapenem against extended-spectrum-β-lactamase (ESBL)-producing isolates with a wide range of MICs. Human-simulated dosing regimens in mice were designed to approximate the free drug percent time above the MIC (fT>MIC) observed for humans following meropenem at 1 g every 8 h and ertapenem at 1 g every 24 h. An in vivo neutropenic mouse thigh infection model was used to examine the bactericidal effects against 31 clinical ESBL Escherichia coli and Klebsiella pneumoniae isolates and 2 non-ESBL isolates included for comparison at a standard 105 inoculum. Three isolates were examined at a high 107 inoculum as well. Meropenem displayed greater in vitro potency, with a median MIC (range) (μg/ml) of 0.125 (0.03 to 32), than did ertapenem, with 0.5 (0.012 to 128). Seven of the 31 ESBL isolates were removed from the efficacy analysis due to their inability to establish infection in the mouse model. When MICs were ≤1.5 μg/ml for ertapenem (≤0.5 μg/ml for meropenem), similar reductions in CFU (≈ 2-log kill) were observed for both ertapenem (fT>MIC ≥ 23%) and meropenem (fT>MIC ≥ 75%). Ertapenem showed bacterial regrowth for seven of eight isolates, with MICs of ≥2 μg/ml (fT>MIC ≤ 20%), while meropenem displayed antibacterial potency that varied from a static effect to a 1-log bacterial reduction in these isolates (fT>MIC = 30 to 65%). At a 107 inoculum, both agents eradicated bacteria due to adequate exposures (fT>MIC = 20 to 45%). Due to low MICs, no difference in bacterial kill was noted for the majority of ESBL isolates tested. However, for isolates with raised ertapenem MICs of ≥2 μg/ml, meropenem displayed sustained efficacy due to its greater in vitro potency and higher resultant fT>MIC.


1991 ◽  
Vol 35 (3) ◽  
pp. 417-422 ◽  
Author(s):  
M L van Ogtrop ◽  
H Mattie ◽  
H F Guiot ◽  
E van Strijen ◽  
B R Sekh ◽  
...  

Author(s):  
Xuemei Zhen ◽  
Cecilia Stålsby Lundborg ◽  
Xueshan Sun ◽  
Xiaoqian Hu ◽  
Hengjin Dong

Quantifying economic and clinical outcomes for interventions could help to reduce third-generation cephalosporin resistance and Escherichia coli or Klebsiella pneumoniae. We aimed to compare the differences in clinical and economic burden between third-generation cephalosporin-resistant E. coli (3GCREC) and third-generation cephalosporin-susceptible E. coli (3GCSEC) cases, and between third-generation cephalosporin-resistant K. pneumoniae (3GCRKP) and third-generation cephalosporin-susceptible K. pneumoniae (3GCSKP) cases. A retrospective and multicenter study was conducted. We collected data from electronic medical records for patients who had clinical samples positive for E. coli or K. pneumoniae isolates during 2013 and 2015. Propensity score matching (PSM) was conducted to minimize the impact of potential confounding variables, including age, sex, insurance, number of diagnoses, Charlson comorbidity index, admission to intensive care unit, surgery, and comorbidities. We also repeated the PSM including length of stay (LOS) before culture. The main indicators included economic costs, LOS and hospital mortality. The proportions of 3GCREC and 3GCRKP in the sampled hospitals were 44.3% and 32.5%, respectively. In the two PSM methods, 1804 pairs and 1521 pairs were generated, and 1815 pairs and 1617 pairs were obtained, respectively. Compared with susceptible cases, those with 3GCREC and 3GCRKP were associated with significantly increased total hospital cost and excess LOS. Inpatients with 3GCRKP were significantly associated with higher hospital mortality compared with 3GCSKP cases, however, there was no significant difference between 3GCREC and 3GCSEC cases. Cost reduction and outcome improvement could be achieved through a preventative approach in terms of both antimicrobial stewardship and preventing the transmission of organisms.


2016 ◽  
Vol 60 (5) ◽  
pp. 3001-3006 ◽  
Author(s):  
Akihiro Morinaka ◽  
Yuko Tsutsumi ◽  
Keiko Yamada ◽  
Yoshihiro Takayama ◽  
Shiro Sakakibara ◽  
...  

ABSTRACTGram-negative bacteria are evolving to produce β-lactamases of increasing diversity that challenge antimicrobial chemotherapy. OP0595 is a new diazabicyclooctane serine β-lactamase inhibitor which acts also as an antibiotic and as a β-lactamase-independent β-lactam “enhancer” againstEnterobacteriaceae. Here we determined the optimal concentration of OP0595 in combination with piperacillin, cefepime, and meropenem, in addition to the antibacterial activity of OP0595 alone and in combination with cefepime, inin vitrotime-kill studies and anin vivoinfection model against five strains of CTX-M-15-positiveEscherichia coliand five strains of KPC-positiveKlebsiella pneumoniae. An OP0595 concentration of 4 μg/ml was found to be sufficient for an effective combination with all three β-lactam agents. In bothin vitrotime-kill studies and anin vivomodel of infection, cefepime-OP0595 showed stronger efficacy than cefepime alone against all β-lactamase-positive strains tested, whereas OP0595 alone showed weaker or no efficacy. Taken together, these data indicate that combinational use of OP0595 and a β-lactam agent is important to exert the antimicrobial functions of OP0595.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yishuai Lin ◽  
Ying Zhang ◽  
Shixing Liu ◽  
Dandan Ye ◽  
Liqiong Chen ◽  
...  

Colistin is being considered as “the last ditch” treatment in many infections caused by Gram-negative stains. However, colistin is becoming increasingly invalid in treating patients who are infected with colistin-resistant Escherichia coli (E. coli) and Klebsiella Pneumoniae (K. pneumoniae). To cope with the continuous emergence of colistin resistance, the development of new drugs and therapies is highly imminent. Herein, in this work, we surprisingly found that the combination of quercetin with colistin could efficiently and synergistically eradicate the colistin-resistant E. coli and K. pneumoniae, as confirmed by the synergy checkboard and time-kill assay. Mechanismly, the treatment of quercetin combined with colistin could significantly downregulate the expression of mcr-1 and mgrB that are responsible for colistin-resistance, synergistically enhancing the bacterial cell membrane damage efficacy of colistin. The colistin/quercetin combination was notably efficient in eradicating the colistin-resistant E. coli and K. pneumoniae both in vitro and in vivo. Therefore, our results may provide an efficient alternative pathway against colistin-resistant E. coli and K. pneumoniae infections.


2009 ◽  
Vol 75 (11) ◽  
pp. 3648-3655 ◽  
Author(s):  
Joshua B. Daniels ◽  
Douglas R. Call ◽  
Dale Hancock ◽  
William M. Sischo ◽  
Katherine Baker ◽  
...  

ABSTRACT Third-generation cephalosporin resistance of Salmonella and commensal Escherichia coli isolates from cattle in the United States is predominantly conferred by the cephamycinase CMY-2, which inactivates β-lactam antimicrobial drugs used to treat a wide variety of infections, including pediatric salmonellosis. The emergence and dissemination of bla CMY-2 --bearing plasmids followed and may in part be the result of selection pressure imposed by the widespread utilization of ceftiofur, a third-generation veterinary cephalosporin. This study assessed the potential effects of ceftiofur on bla CMY-2 transfer and dissemination by (i) an in vivo experimental study in which calves were inoculated with competent bla CMY-2-bearing plasmid donors and susceptible recipients and then subjected to ceftiofur selection and (ii) an observational study to determine whether ceftiofur use in dairy herds is associated with the occurrence and frequency of cephalosporin resistance in Salmonella and commensal E. coli. The first study revealed bla CMY-2 plasmid transfer in both ceftiofur-treated and untreated calves but detected no enhancement of plasmid transfer associated with ceftiofur treatment. The second study detected no association (P = 0.22) between ceftiofur use and either the occurrence of ceftiofur-resistant salmonellosis or the frequency of cephalosporin resistance in commensal E. coli. However, herds with a history of salmonellosis (including both ceftiofur-resistant and ceftiofur-susceptible Salmonella isolates) used more ceftiofur than herds with no history of salmonellosis (P = 0.03) These findings fail to support a major role for ceftiofur use in the maintenance and dissemination of bla CMY-2-bearing plasmid mediated cephalosporin resistance in commensal E. coli and in pathogenic Salmonella in these dairy cattle populations.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1551
Author(s):  
Uthaibhorn Singkham-in ◽  
Netchanok Muhummudaree ◽  
Tanittha Chatsuwan

Carbapenem-resistant Klebsiella pneumoniae has globally emerged as an urgent threat leading to the limitation for treatment. K. pneumoniae carrying blaOXA-48, which plays a broad magnitude of carbapenem susceptibility, is widely concerned. This study aimed to characterize related carbapenem resistance mechanisms and forage for new antibiotic combinations to combat blaOXA-48-carrying K. pneumoniae. Among nine isolates, there were two major clones and a singleton identified by ERIC-PCR. Most isolates were resistant to ertapenem (MIC range: 2–>256 mg/L), but two isolates were susceptible to imipenem and meropenem (MIC range: 0.5–1 mg/L). All blaOXA-48-carrying plasmids conferred carbapenem resistance in Escherichia coli transformants. Two ertapenem-susceptible isolates carried both outer membrane proteins (OMPs), OmpK35 and OmpK36. Lack of at least an OMP was present in imipenem-resistant isolates. We evaluated the in vitro activity of an overlooked antibiotic, azithromycin, in combination with other antibiotics. Remarkably, azithromycin exhibited synergism with colistin and fosfomycin by 88.89% and 77.78%, respectively. Bacterial regrowth occurred after exposure to colistin or azithromycin alone. Interestingly, most isolates were killed, reaching synergism by this combination. In conclusion, the combination of azithromycin and colistin may be an alternative strategy in dealing with blaOXA-48-carrying K. pneumoniae infection during a recent shortage of newly effective antibiotic development.


Sign in / Sign up

Export Citation Format

Share Document