scholarly journals Cytotoxic effect of Agaricus bisporus and Lactarius rufus β-d-glucans on HepG2 cells

2013 ◽  
Vol 58 ◽  
pp. 95-103 ◽  
Author(s):  
Amanda do Rocio Andrade Pires ◽  
Andrea Caroline Ruthes ◽  
Silvia Maria Suter Correia Cadena ◽  
Alexandra Acco ◽  
Philip Albert James Gorin ◽  
...  
2017 ◽  
Vol 170 ◽  
pp. 33-42 ◽  
Author(s):  
Amanda do Rocio Andrade Pires ◽  
Andrea Caroline Ruthes ◽  
Silvia Maria Suter Correia Cadena ◽  
Marcello Iacomini

Author(s):  
Leonardo Augusto dos Santos Escaliante ◽  
Bianca Busato ◽  
Carmen Lúcia de Oliveira Petkowicz ◽  
Silvia Maria Suter Correia Cadena ◽  
Guilhermina Rodrigues Noleto
Keyword(s):  

2021 ◽  
pp. 1-9
Author(s):  
Hong-Wei Hua ◽  
Hao-Sheng Jiang ◽  
Ling Jia ◽  
Yi-Ping Jia ◽  
Yu-Lan Yao ◽  
...  

BACKGROUND: Secreted protein acidic and rich in cysteine (SPARC) is implicated in cancer progression, but its role and associated molecular mechanism in the sorafenib sensitivity of hepatocellular carcinoma cells (HCC) remains elusive. METHODS: Human HCC cell lines Hep3B and HepG2 were treated with sorafenib alone or combined with activator or inhibitor of ferroptosis. Cell viability assay, reactive oxygen species (ROS) assay, lactate dehydrogenase (LDH) assay and western blot were used to study the regulatory mechanism of SPARC on HCC cells. RESULTS: Overexpression of SPARC enhanced the cytotoxic effect of sorafenib in Hep3B and HepG2 cells compared with parental cells. Depletion of SPARC decreased the cytotoxic effect of sorafenib in Hep3B and HepG2 cells compared with parental cells. Moreover, overexpression of SPARC significantly induced LDH release, whereas depletion of SPARC suppressed the release of LDH in Hep3B and HepG2 cells. Inhibition of ferroptosis exerted a clear inhibitory role against LDH release, whereas activation of ferroptosis promoted the release of LDH in HCC cells, as accompanied with deregulated expression of ferroptosis-related proteins. Furthermore, overexpression of SPARC induced oxidative stress, whereas depletion of SPARC suppressed the production of ROS. Deferoxamine (DFX)-induced inhibition of ferroptosis suppressed the production of ROS, while activation of ferroptosis promoted the contents of ROS in HCC cells exposed to sorafenib. CONCLUSION: Our findings give a better understanding of ferroptosis and its molecular mechanism in HCC cells that is regulated by SPARC in response to sorafenib.


2021 ◽  
Vol 11 ◽  
Author(s):  
Hui Jia ◽  
Bin Zhao ◽  
Fangfang Zhang ◽  
Ramesh Kumar Santhanam ◽  
Xinying Wang ◽  
...  

Polysaccharides are the main active ingredients of ginseng. To extract the most effective polysaccharides against hepatocellular carcinoma (HCC), we isolated and characterized the polysaccharides from the mountain cultivated ginseng (MCG) and compared their composition and cytotoxic effect with cultivated ginseng (CG) polysaccharide against HepG2 cell lines for the first time. MCG polysaccharides and CG polysaccharides were fractionated into two fractions such as MTPS-1, MTPS-2 and CTPS-1, CTPS-2 by salting out, respectively. Compared to CG, MCG possessed appreciable cytotoxic effect against HepG2 cells among that MTPS-1 possess fortified effect. Then, MTPS-1 was selected for further isolation process and seven acidic polysaccharides (MCGP-1–MCGP-7) were obtained using ethanol precipitation, ion-exchange, and gel permeation chromatography techniques. Structural characteristics of the polysaccharides (MCGP-1–MCGP-7) were done by adapting methylation/GC-MS and NMR analysis. Overall, MCGP-3 polysaccharide was found to possess significant cytotoxic effect against HepG2 cells with the IC50 value.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Wasitta Rachakhom ◽  
Ratana Banjerdpongchai

Calomelanone, 2 ′ ,6 ′ -dihydroxy-4,4 ′ -dimethoxydihydrochalcone, possesses anticancer activities. This study was conducted to investigate the cytotoxic effect of calomelanone, a dihydrochalcone analogue, on human cancer cells and its associated mechanisms. The cytotoxic effect of calomelanone was measured by MTT assay. Annexin V-FITC/propidium iodide and DiOC6 staining that employed flow cytometry were used to determine the mode of cell death and reduction of mitochondrial transmembrane potential (MTP), respectively. Caspase activities were measured using specific substrates and colorimetric analysis. The expression levels of Bcl-2 family proteins were determined by immunoblotting. Reactive oxygen species were also measured using 2 ′ ,7 ′ -dihydrodichlorofluorescein diacetate and dihydroethidium (fluorescence dyes). Calomelanone was found to be toxic towards various human cancer cells, including acute promyelocytic HL-60 and monocytic leukemic U937 cells, in a dose-dependent manner at 24 h and human hepatocellular HepG2 cells at 48 h. However, the proliferation of HepG2 cells increased at 24 h. Calomelanone was found to induce apoptosis in HL-60 and U937 at 24 h and HepG2 apoptosis at 48 h via the intrinsic pathway by inducing MTP disruption. This compound also induced caspase-3, caspase-8, and caspase-9 activities. Calomelanone upregulated proapoptotic Bax and Bak and downregulated antiapoptotic Bcl-xL proteins in HepG2 cells. Moreover, signaling was also associated with oxidative stress in HepG2 cells. Calomelanone induced autophagy at 24 h of treatment, which was evidenced by staining with monodansylcadaverine (MDC) to represent autophagic flux. This was associated with a decrease of Akt (survival pathway) and an upregulation of Atg5 (the marker of autophagy). Thus, calomelanone induced apoptosis/regulated cell death in HL-60, U937, and HepG2 cells. However, it also induced autophagy in HepG2 depending on duration, dose, and type of cells. Thus, calomelanone could be used as a potential anticancer agent for cancer treatment. Nevertheless, acute and chronic toxicity should be further investigated in animals before conducting investigations in human patients.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Maria Francesca Armentano ◽  
Faustino Bisaccia ◽  
Rocchina Miglionico ◽  
Daniela Russo ◽  
Nicoletta Nolfi ◽  
...  

The main goal of this study was to characterize thein vitroantioxidant activity and the apoptotic potential ofS. birreamethanolic root extract (MRE). Among four tested extracts, obtained with different solvents, MRE showed the highest content of polyphenols, flavonoids, and tannins together with antioxidant activities tested with superoxide, nitric oxide, ABTS, and beta-carotene bleaching assays. Moreover, the cytotoxic effect of MRE was evaluated on the hepatocarcinoma cell line HepG2. In these cells, MRE treatment induced apoptosis and generated reactive oxygen species (ROS) in dose-dependent manner. The cytotoxic effect promoted by MRE was prevented by pretreatment of HepG2 cells with N-acetyl-L-cysteine (NAC), suggesting that oxidative stress was pivotal in MRE-mediated cell death. Moreover, we showed that the MRE treatment induced the mitochondrial membrane depolarization and the cytochromecrelease from mitochondria into the cytosol. It suggests that the apoptosis occurred in a mitochondrial-dependent pathway. Interestingly, MRE showed a sensibly lower cytotoxicity, associated with a low increase of ROS, in normal human dermal fibroblasts compared to HepG2 cells. It is suggested that the methanolic root extract ofS. Birreais able to selectively increase intracellular ROS levels in cancer cells, promoting cell death.


2012 ◽  
Vol 87 (2) ◽  
pp. 1620-1627 ◽  
Author(s):  
Andrea C. Ruthes ◽  
Yanna D. Rattmann ◽  
Elaine R. Carbonero ◽  
Philip A.J. Gorin ◽  
Marcello Iacomini

2019 ◽  
Vol 38 (6) ◽  
pp. 694-702 ◽  
Author(s):  
S Gheena ◽  
D Ezhilarasan

Hepatocellular carcinoma is the second most common cause of cancer death in the world and its incidence has dramatically increased worldwide in the past two decades. Syringic acid (SA) has been studied for its hepatoprotective, anti-inflammatory, immunomodulatory, free radical scavenging, and antioxidant activities. We aimed to evaluate the cytotoxic effect of SA against human hepatoma HepG2 cell line. Cytotoxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. HepG2 cells were treated with SA at concentration ranges of 25, 50, and 100 µM for 24 h. Reactive oxygen species (ROS) expression was investigated by dichlorofluorescein staining assay. Morphological changes of SA-treated HepG2 cells were evaluated by acridine orange (AO) and ethidium bromide (EB) dual staining. Apoptotic marker gene expressions were evaluated by qPCR. SA treatment caused significant cytotoxicity and liberation of ROS in HepG2 cells. AO and EB staining showed membrane blebbing and distortion in SA-treated cells. Apoptotic markers such as caspases 3 and 9, cytochrome c, Apaf-1, Bax, and p53 gene expressions were significantly increased upon SA treatment indicating the possibility of apoptosis induction in HepG2 cells. This treatment also caused significant downregulation of Bcl-2 gene expression. SA has a cytotoxic effect on human HepG2 cell line, and this might be a promising agent in anticancer research.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Wan-angkan Poolsri ◽  
Phornpun Phokrai ◽  
Somrudee Suwankulanan ◽  
Narinthorn Phakdeeto ◽  
Pattamaphorn Phunsomboon ◽  
...  

Increased expression levels of both mitochondrial citrate transporter (CTP) and plasma membrane citrate transporter (PMCT) proteins have been found in various cancers. The transported citrates by these two transporter proteins provide acetyl-CoA precursors for the de novo lipogenesis (DNL) pathway to support a high rate of cancer cell viability and development. Inhibition of the DNL pathway promotes cancer cell apoptosis without apparent cytotoxic to normal cells, leading to the representation of selective and powerful targets for cancer therapy. The present study demonstrates that treatments with CTP inhibitor (CTPi), PMCT inhibitor (PMCTi), and the combination of CTPi and PMCTi resulted in decreased cell viability in two hepatocellular carcinoma cell lines (HepG2 and HuH-7). Treatment with citrate transporter inhibitors caused a greater cytotoxic effect in HepG2 cells than in HuH-7 cells. A lower concentration of combined CTPi and PMCTi promotes cytotoxic effect compared with either of a single compound. An increased cell apoptosis and an induced cell cycle arrest in both cell lines were reported after administration of the combined inhibitors. A combination treatment exhibits an enhanced apoptosis through decreased intracellular citrate levels, which consequently cause inhibition of fatty acid production in HepG2 cells. Apoptosis induction through the mitochondrial-dependent pathway was found as a consequence of suppressed carnitine palmitoyl transferase-1 (CPT-1) activity and enhanced ROS generation by combined CTPi and PMCTi treatment. We showed that accumulation of malonyl-CoA did not correlate with decreasing CPT-1 activity. The present study showed that elevated ROS levels served as an inhibition on Bcl-2 activity that is at least in part responsible for apoptosis. Moreover, inhibition of the citrate transporter is selectively cytotoxic to HepG2 cells but not in primary human hepatocytes, supporting citrate-mediating fatty acid synthesis as a promising cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document