Effects of recombinant swollenin on the enzymatic hydrolysis, rumen fermentation, and rumen microbiota during in vitro incubation of agricultural straws

2019 ◽  
Vol 122 ◽  
pp. 348-358 ◽  
Author(s):  
Lizhi Li ◽  
Mingren Qu ◽  
Chanjuan Liu ◽  
Lanjiao Xu ◽  
Ke Pan ◽  
...  
2020 ◽  
Vol 8 (8) ◽  
pp. 1160 ◽  
Author(s):  
Jiangkun Yu ◽  
Liyuan Cai ◽  
Jiacai Zhang ◽  
Ao Yang ◽  
Yanan Wang ◽  
...  

This study was performed to explore the predominant responses of rumen microbiota with thymol supplementation as well as effective dose of thymol on rumen fermentation. Thymol at different concentrations, i.e., 0, 100 mg/L, 200 mg/L, and 400 mg/L (four groups × five replications) was applied for 24 h of fermentation in a rumen fluid incubation system. Illumina MiSeq sequencing was applied to investigate the ruminal microbes in addition to the examination of rumen fermentation. Thymol doses reached 200 mg/L and significantly decreased (p < 0.05) total gas production (TGP) and methane production; the production of total volatile fatty acids (VFA), propionate, and ammonia nitrogen, and the digestibility of dry matter and organic matter were apparently decreased (p < 0.05) when the thymol dose reached 400 mg/L. A thymol dose of 200 mg/L significantly affected (p < 0.05) the relative abundance of 14 genera of bacteria, three species of archaea, and two genera of protozoa. Network analysis showed that bacteria, archaea, and protozoa significantly correlated with methane production and VFA production. This study indicates an optimal dose of thymol at 200 mg/L to facilitate rumen fermentation, the critical roles of bacteria in rumen fermentation, and their interactions with the archaea and protozoa.


2019 ◽  
Vol 32 (6) ◽  
pp. 776-782 ◽  
Author(s):  
Jong Nam Kim ◽  
Jaeyong Song ◽  
Eun Joong Kim ◽  
Jongsoo Chang ◽  
Chang-Hyun Kim ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 108
Author(s):  
Yichong Wang ◽  
Sijiong Yu ◽  
Yang Li ◽  
Shuang Zhang ◽  
Xiaolong Qi ◽  
...  

Nutritional strategies can be employed to mitigate greenhouse emissions from ruminants. This article investigates the effects of polyphenols extracted from the involucres of Castanea mollissima Blume (PICB) on in vitro rumen fermentation. Three healthy Angus bulls (350 ± 50 kg), with permanent rumen fistula, were used as the donors of rumen fluids. A basic diet was supplemented with five doses of PICB (0%–0.5% dry matter (DM)), replicated thrice for each dose. Volatile fatty acids (VFAs), ammonia nitrogen concentration (NH3-N), and methane (CH4) yield were measured after 24 h of in vitro fermentation, and gas production was monitored for 96 h. The trial was carried out over three runs. The results showed that the addition of PICB significantly reduced NH3-N (p < 0.05) compared to control. The 0.1%–0.4% PICB significantly decreased acetic acid content (p < 0.05). Addition of 0.2% and 0.3% PICB significantly increased the propionic acid content (p < 0.05) and reduced the acetic acid/propionic acid ratio, CH4 content, and yield (p < 0.05). A highly significant quadratic response was shown, with increasing PICB levels for all the parameters abovementioned (p < 0.01). The increases in PICB concentration resulted in a highly significant linear and quadratic response by 96-h dynamic fermentation parameters (p < 0.01). Our results indicate that 0.2% PICB had the best effect on in-vitro rumen fermentation efficiency and reduced greenhouse gas production.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 177-177
Author(s):  
Gabriela E Martinez Padilla ◽  
Rajesh Jha ◽  
Vivek Fellner ◽  
Eric van Heugten

Abstract This study evaluated short-chain fatty acid (SCFA) production from purified fiber sources when fermented in vitro using pig cecal contents as an inoculum. Fiber sources of interest were inulin from chicory root (native and long-chain inulin with 90 and 98% fiber, respectively), pectin from citrus peel (high methoxyl pectin), resistant starch (native starch), potato starch (commercial grade), and β-glucan (β-1,3;β-1,6 yeast-derived). Cellulose and cornstarch were used as indigestible and highly digestible carbohydrates, respectively. Triplicate samples of substrates (2 g) were subjected to enzymatic hydrolysis with pepsin and pancreatin for 6 h. Subsequently, hydrolyzed residues (200 mg) were incubated under anaerobic conditions at 39°C with 30 mL solution of cecal inoculum collected from 3 sows fed a standard commercial diet and buffered mineral solution. After 48 h of incubation, solutions from fermented samples were analyzed for pH, SCFA, and branched-chain fatty acids (BCFA) using gas-liquid chromatography. Enzymatic hydrolysis had no effect on digestion of β-glucan, but total SCFA concentration after fermentation was highest (26.13 mmol/g) followed by resistant starch (22.61 mmol/g) and potato starch (22.20 mmol/g) and was lowest for cellulose (13.91 mmol/g). In contrast, native inulin was highly digested during enzymatic hydrolysis, resulting in the lowest substrate available for fermentation (11.84% DM) and the highest pH (5.98). Enzymatic hydrolysis and fermentation of resistant starch increased (P&lt; 0.001) concentrations of acetate (0.60 mg/g), whereas potato starch and β-glucan yielded more butyrate (0.60 and 0.54 mg/g respectively), and β-glucan resulted in greater (P&lt; 0.001) propionate concentrations (0.69 mg/g). Pectin resulted in the highest fermentation (82.38% DM disappearance) and the lowest pH (4.03) compared to the other fiber sources (P&lt; 0.001) and yielded the lowest BCFA concentration (1.89 mM, P&lt; 0.001). Results suggest that fermentation of resistant starch, potato starch, and β-glucan produced higher SCFA concentrations, while pectin resulted in a decreased pH of fermentation solution.


Sign in / Sign up

Export Citation Format

Share Document