Electrostatic spraying of chitosan coating with different deacetylation degree for strawberry preservation

2019 ◽  
Vol 139 ◽  
pp. 1232-1238 ◽  
Author(s):  
Yongli Jiang ◽  
Li Yu ◽  
Yunwen Hu ◽  
Zichun Zhu ◽  
Chenjun Zhuang ◽  
...  
Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 716
Author(s):  
Milad Yaghoubi ◽  
Ali Ayaseh ◽  
Kazem Alirezalu ◽  
Zabihollah Nemati ◽  
Mirian Pateiro ◽  
...  

The present study was conducted to assess the impact of chitosan coating (1%) containing Artemisia fragrans essential oil (500, 1000, and 1500 ppm) as antioxidant and antimicrobial agent on the quality properties and shelf life of chicken fillets during refrigerated storage. After packaging meat samples, physicochemical, microbiological, and organoleptic attributes were evaluated at 0, 3, 6, 9, and 12 days at 4 °C. The results revealed that applied chitosan (CH) coating in combination with Artemisia fragrans essential oils (AFEOs) had no significant (p < 0.05) effects on proximate composition among treatments. The results showed that the incorporation of AFEOs into CH coating significantly reduced (p < 0.05) pH, thiobarbituric acid reactive substances (TBARS), and total volatile base nitrogen (TVB-N), especially for 1% CH coating + 1500 ppm AFEOs, with values at the end of storage of 5.58, 1.61, and 2.53, respectively. The coated samples also displayed higher phenolic compounds than those obtained by uncoated samples. Coated chicken meat had, significantly (p < 0.05), the highest inhibitory effects against microbial growth. The counts of TVC (total viable counts), coliforms, molds, and yeasts were significantly lower (p < 0.05) in 1% CH coating + 1500 ppm AFEOs fillets (5.32, 3.87, and 4.27 Log CFU/g, respectively) at day 12. Organoleptic attributes of coated samples also showed the highest overall acceptability scores than uncoated ones. Therefore, the incorporation of AFEOs into CH coating could be effectively used for improving stability and shelf life of chicken fillets during refrigerated storage.


2021 ◽  
Vol 11 (10) ◽  
pp. 4417
Author(s):  
Veronica Vendramin ◽  
Gaia Spinato ◽  
Simone Vincenzi

Chitosan is a chitin-derived fiber, extracted from the shellfish shells, a by-product of the fish industry, or from fungi grown in bioreactors. In oenology, it is used for the control of Brettanomyces spp., for the prevention of ferric, copper, and protein casse and for clarification. The International Organisation of Vine and Wine established the exclusive utilization of fungal chitosan to avoid the eventuality of allergic reactions. This work focuses on the differences between two chitosan categories, fungal and animal chitosan, characterizing several samples in terms of chitin content and degree of deacetylation. In addition, different acids were used to dissolve chitosans, and their effect on viscosity and on the efficacy in wine clarification were observed. The results demonstrated that even if fungal and animal chitosans shared similar chemical properties (deacetylation degree and chitin content), they showed different viscosity depending on their molecular weight but also on the acid used to dissolve them. A significant difference was discovered on their fining properties, as animal chitosans showed a faster and greater sedimentation compared to the fungal ones, independently from the acid used for their dissolution. This suggests that physical–chemical differences in the molecular structure occur between the two chitosan categories and that this significantly affects their technologic (oenological) properties.


2021 ◽  
Vol 2 (1) ◽  
pp. 110-120
Author(s):  
Maisa Abdelmoula ◽  
Hajer Ben Hlima ◽  
Frédéric Michalet ◽  
Gérard Bourduche ◽  
Jean-Yves Chavant ◽  
...  

Commercial adhesives present a high bond strength and water resistance, but they are considered non-healthier products. Chitosan can be considered as an interesting biosourced and biodegradable alternative, despite its low water resistance. Here, its wood bonding implementation and its tensile shear strength in dry and wet conditions were investigated depending on its structural characteristics. Firstly, the spread rate, open assembly time, drying pressure, drying temperature, and drying time have been determined for two chitosans of European pine double lap specimens. An adhesive solution spread rate of 1000 g·m−2, an open assembly time of 10 min, and a pressure temperature of 55 °C for 105 min led to a bond strength of 2.82 MPa. Secondly, a comparison between a high molecular weight/low deacetylation degree chitosan and a lower molecular weight/higher deacetylation degree chitosan was conducted. Tests were conducted with beech simple lap specimens in accordance with the implementation conditions and the conditioning treatments in wet and dry environments required for thermoplastic wood adhesive standards used in non-structural applications (EN 204 and EN 205). The results clearly revealed the dependence of adhesive properties and water resistance on the structural features of chitosans (molecular weight and deacetylation degree), explaining the heterogeneity of results published notably in this field.


Sign in / Sign up

Export Citation Format

Share Document