Lycium barbarum polysaccharide combined with aerobic exercise ameliorated nonalcoholic fatty liver disease through restoring gut microbiota, intestinal barrier and inhibiting hepatic inflammation

Author(s):  
Lu-Lu Gao ◽  
Jia-Min Ma ◽  
Yan-Na Fan ◽  
Yan-Nan Zhang ◽  
Rui Ge ◽  
...  
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Gemma Aragonès ◽  
Sergio González-García ◽  
Carmen Aguilar ◽  
Cristóbal Richart ◽  
Teresa Auguet

Nonalcoholic fatty liver disease (NAFLD) is a common, multifactorial, and poorly understood liver disease whose incidence is globally rising. During the past decade, several lines of evidence suggest that dysbiosis of intestinal microbiome represents an important factor contributing to NAFLD occurrence and its progression into NASH. The mechanisms that associate dysbiosis with NAFLD include changes in microbiota-derived mediators, deregulation of the gut endothelial barrier, translocation of mediators of dysbiosis, and hepatic inflammation. Changes in short chain fatty acids, bile acids, bacterial components, choline, and ethanol are the result of altered intestinal microbiota. We perform a narrative review of the previously published evidence and discuss the use of gut microbiota-derived mediators as potential markers in NAFLD.


2020 ◽  
Author(s):  
Olena H. Kurinna

AbstractNonalcoholic fatty liver disease (NAFLD) bears serious economic consequences for the health care system worldwide and Ukraine, in particular. Cardiovascular diseases (CVD) are the main cause of mortality in NAFLD patients. Changes in the gut microbiota composition can be regarded as a potential mechanism of CVD in NAFLD patients.The purpose of this work was to investigate changes in major gut microbiota phylotypes, Bacteroidetes, Firmicutes and Actinobacteria with quantification of Firmicutes/Bacteroidetes in NAFLD patients with concomitant CVD.The author enrolled 120 NAFLD subjects (25 with concomitant arterial hypertension (AH) and 24 with coronary artery disease (CAD)). The gut microbiota composition was assessed by qPCR.Resultsthe author found a marked tendency towards an increase in the concentration of Bacteroidetes (by 37.11% and 21.30%, respectively) with a decrease in Firmicutes (by 7.38% and 7.77%, respectively) in both groups with comorbid CAD and AH with the identified changes not reaching a statistical significance. The author quantified a statistically significant decrease in the concentration of Actinobacteria in patients with NAFLD with concomitant CAD at 41.37% (p<0.05) as compared with those with an isolated NAFLD. In patients with concomitant AH, the content of Actinobacteria dropped by 12.35%, which was statistically insignificant.Conclusionsthe author established changes in the intestinal microbiota, namely decrease in Actinobacteria in patients with CAD, which requires further research.


Author(s):  
Jiake Yu ◽  
Hu Zhang ◽  
Liya Chen ◽  
Yufei Ruan ◽  
Yiping Chen ◽  
...  

Children with nonalcoholic fatty liver disease (NAFLD) display an altered gut microbiota compared with healthy children. However, little is known about the fecal bile acid profiles and their association with gut microbiota dysbiosis in pediatric NAFLD. A total of 68 children were enrolled in this study, including 32 NAFLD patients and 36 healthy children. Fecal samples were collected and analyzed by metagenomic sequencing to determine the changes in the gut microbiota of children with NAFLD, and an ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) system was used to quantify the concentrations of primary and secondary bile acids. The associations between the gut microbiota and concentrations of primary and secondary bile acids in the fecal samples were then analyzed. We found that children with NAFLD exhibited reduced levels of secondary bile acids and alterations in bile acid biotransforming-related bacteria in the feces. Notably, the decrease in Eubacterium and Ruminococcaceae bacteria, which express bile salt hydrolase and 7α-dehydroxylase, was significantly positively correlated with the level of fecal lithocholic acid (LCA). However, the level of fecal LCA was negatively associated with the abundance of the potential pathogen Escherichia coli that was enriched in children with NAFLD. Pediatric NAFLD is characterized by an altered profile of gut microbiota and fecal bile acids. This study demonstrates that the disease-associated gut microbiota is linked with decreased concentrations of secondary bile acids in the feces. The disease-associated gut microbiota likely inhibits the conversion of primary to secondary bile acids.


Sign in / Sign up

Export Citation Format

Share Document