Using a residual strength model to predict mode II delamination failure of composite materials under block fatigue loading

2020 ◽  
Vol 135 ◽  
pp. 105563 ◽  
Author(s):  
Nabil M. Chowdhury ◽  
Rowan Healey ◽  
John Wang ◽  
Wing Kong Chiu ◽  
Chris Wallbrink
2009 ◽  
Vol 25 (2) ◽  
pp. 195-203 ◽  
Author(s):  
C. L. Chen ◽  
Y. T. Tsai ◽  
K. S. Wang

AbstractThis paper studies the characteristics of a proposed reliability-dependent hazard rate function for composites under fatigue loading. The hazard rate function, in terms of reliability R, is in the form of e+c (1-R)p called (ecp) model, where e denotes the imbedded defects of material strength, c the coefficient of strength degradation, and p the memory characteristics of distributions of both applied stress and fatigue strength during the cumulative damage process. By taking a typical residual strength model in Monte Carlo simulation, this paper presents the time changing of the residual strength distribution and hazard rate of composite under various constant-amplitude cyclic stresses. The values of (e, c, p) are decided by fitting hazard rate function to the data generated in simulation. The results show that, under a suitable suggested value of e, p is a constant depending on the characteristics of stress distribution as well as the residual strength model used in Monte Carlo stimulation, and c is correlated to the maximum cyclic stress in a power-law relationship. Only by knowing the initial strength distribution and the maximum cyclic stress, the fatigue life can be easily estimated by integrating the reliability with time or its equivalent, i.e., the reciprocal of hazard rate function with reliability. Finally, by a proposed approximated equation of fatigue life, the (ecp) model is checked to be highly consistent with S-N curve in both the physical means and the equation form. The analysis presented here may be helpful in designing and maintenance planning of composite under fatigue loading.


2022 ◽  
Vol 154 ◽  
pp. 106574
Author(s):  
Francisco Maciel Monticeli ◽  
Maria Odila Hilário Cioffi ◽  
Herman Jacobus Cornelis Voorwald

2013 ◽  
Vol 471 ◽  
pp. 335-340 ◽  
Author(s):  
A.M.T. Arifin ◽  
S. Abdullah ◽  
Rozli Zulkifli ◽  
D.A. Wahab

This paper presents the investigation of composite materials lamination using different materials in the structure of lamination. The main purpose of the study is to evaluate the behaviour of characteristics in composite materials subjected to difference of fatigue loading, leading to understand the criteria that influence the behaviour of composite lamination structure. Therefore, in this research, the orientation of lamination structure used is 00/900and the material selected for the study were chopped strand mat (csm) and woven roving fabric (wr) as a reinforcement and the matrix used were polyester and epoxy resin. The composite lamination structure was produced using hand lay-up technique. The fatigue condition experiment of composite materials in this research was carried under tension-tension loading. With difference in fatigue loading condition, the lifetime of composite structure will be different and the cracking phenomenon in the structure will also be different. It is suggested that, different number of lamination and amount of reinforcement and matrix, produce a variety of materials characteristic with respect to elasticity of material. An implication of the study in this research showed various behaviour of composite materials with different materials used and it showed a difference phenomenon in comparison to metalic materials.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5653
Author(s):  
Chao Wang ◽  
Jiwen Zhang

Based on tension–tension fatigue tests, this paper investigated the mechanical property degradation of carbon fiber reinforced polymer (CFRP) tendons from a macroscopic perspective. According to the degradation regularity, this paper proposed a normalized phenomenological fatigue model based on the residual stiffness/strength of CFRP tendons during the fatigue loading process. In this paper, the residual stiffness of CFRP tendons were tested at five stress ranges, while the residual strength was tested at four stress ranges. In order to validate the reliability and applicability of proposed fatigue damage model, the predictions of proposed model and cited models from the literature are discussed and compared. Furthermore, experimental results from literatures were adopted to verify the accuracy of the proposed model. The results showed that the proposed model is applicable to predict both residual stiffness and residual strength throughout fatigue life cycle and has a better accuracy than models from the literature. Moreover, the three-stage degradation can be observed from the degradation processes of stiffness and strength at each stress level.


Sign in / Sign up

Export Citation Format

Share Document