Detection of transcripts of the aflatoxin genes aflD, aflO, and aflP by reverse transcription–polymerase chain reaction allows differentiation of aflatoxin-producing and non-producing isolates of Aspergillus flavus and Aspergillus parasiticus

2005 ◽  
Vol 98 (2) ◽  
pp. 201-210 ◽  
Author(s):  
Barbara Scherm ◽  
Michele Palomba ◽  
Domenico Serra ◽  
Angela Marcello ◽  
Quirico Migheli
2002 ◽  
Vol 65 (5) ◽  
pp. 840-844 ◽  
Author(s):  
RUEY-SHYANG CHEN ◽  
JWU-GUH TSAY ◽  
YU-FEN HUANG ◽  
ROBIN Y.-Y. CHIOU

The Aspergillus flavus group covers species of A. flavus and Aspergillus parasiticus as aflatoxin producers and Aspergillus oryzae and Aspergillus sojae as koji molds. Genetic similarity among these species is high, and aflatoxin production of a culture may be affected by cultivation conditions and substrate composition. Therefore, a polymerase chain reaction (PCR)-mediated method of detecting the aflatoxin-synthesizing genes to indicate the degree of risk a genotype has of being a phenotypic producer was demonstrated. In this study, 19 strains of the A. flavus group, including A. flavus, A. parasiticus, A. oryzae, A. sojae, and one Aspergillus niger, were subjected to PCR testing in an attempt to detect four genes, encoding for norsolorinic acid reductase (nor-1), versicolorin A dehydrogenase (ver-1), sterigmatocystin O-methyltransferase (omt-1), and a regulatory protein (apa-2), involved in aflatoxin biosynthesis. Concurrently, the strains were cultivated in yeast-malt (YM) broth for aflatoxin detection. Fifteen strains were shown to possess the four target DNA fragments. With regard to aflatoxi-genicity, all seven aflatoxigenic strains possessed the four DNA fragments, and five strains bearing less than the four DNA fragments did not produce aflatoxin. When peanut kernels were artificially contaminated with A. parasiticus and A. niger for 7 days, the contaminant DNA was extractable from a piece of cotyledon (ca. 100 mg), and when subjected to multiplex PCR testing using the four pairs of primers coding for the above genes, they were successfully detected. The target DNA fragments were detected in the kernels infected with A. parasiticus, and none was detected in the sound (uninoculated) kernels or in the kernels infected with A. niger.


2006 ◽  
Vol 175 (4S) ◽  
pp. 485-486
Author(s):  
Sabarinath B. Nair ◽  
Christodoulos Pipinikas ◽  
Roger Kirby ◽  
Nick Carter ◽  
Christiane Fenske

2003 ◽  
Vol 15 (2) ◽  
pp. 99 ◽  
Author(s):  
Paisan Tienthai ◽  
Naoko Kimura ◽  
Paraskevi Heldin ◽  
Eimei Sato ◽  
Heriberto Rodriguez-Martinez

Hyaluronan (HA) has been related to fertilization and embryo development in the pig. Furthermore, HA is present in pig oviduct fluid and the lining epithelium, particularly of the pre-ovulatory sperm reservoir. Because the mechanisms that regulate HA synthesis have not yet been clarified, semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) was conducted to assess the expression of mRNAs of two HA-synthesizing enzymes (has2 and has3) in the oviduct epithelium (uterotubal junction, isthmus, ampullary–isthmic junction and ampulla segments) of non-inseminated (control) and inseminated (treatment) sows at pre-, peri- and post-ovulatory oestrus. Only has3 mRNA was detected; it was present in all tubal segments of both control and treatment samples. The level of has3 expression did not vary significantly between non-inseminated and inseminated specimens, but there was a tendency (NS) for increased mean values during the peri- and post-ovulatory stages compared with pre-ovulation. It is concluded that has3 is expressed by the porcine endosalpinx epithelium and the levels of expression do not vary during the critical periods of sperm transport and fertilization, despite fluctuating levels of HA in the tubal fluid at corresponding periods.


Sign in / Sign up

Export Citation Format

Share Document