scholarly journals Evaluating food additives as antifungal agents against Monilinia fructicola in vitro and in hydroxypropyl methylcellulose–lipid composite edible coatings for plums

2014 ◽  
Vol 179 ◽  
pp. 72-79 ◽  
Author(s):  
Hakan Karaca ◽  
María B. Pérez-Gago ◽  
Verònica Taberner ◽  
Lluís Palou
LWT ◽  
2011 ◽  
Vol 44 (10) ◽  
pp. 2342-2348 ◽  
Author(s):  
Silvia A. Valencia-Chamorro ◽  
Lluís Palou ◽  
Miguel Ángel del Río ◽  
María B. Pérez-Gago

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 757
Author(s):  
Asunción Fernández-Catalán ◽  
Lluís Palou ◽  
Verònica Taberner ◽  
Amparo Grimal ◽  
Maricruz Argente-Sanchis ◽  
...  

Composite edible coatings based on hydroxypropyl methylcellulose (HPMC), as a polymeric phase, and oleic acid (OA) or beeswax (BW), as a hydrophobic phase, were formulated with different food additives as antifungal ingredients. HPMC–OA coatings containing 2% (w/v) sodium benzoate (SB), 1% ammonium carbonate (AC), 1% potassium carbonate (PC), 1% potassium bicarbonate (PBC), 1% sodium bicarbonate (SBC), 1% potassium silicate (PSi), 0.1% sodium methyl paraben (SMP) or 0.1% sodium ethyl paraben (SEP), and HPMC–BW coatings containing 2% sodium propionate (SP), 2% PBC, 2% SB or 0.1% SEP were evaluated for the control of Alternaria black spot (ABS) on Diospyros kaki Thunb. ’Rojo Brillante’ persimmons artificially inoculated with Alternaria alternata. After 14 days of incubation at 20 °C, HPMC–OA coatings formulated with PBC, PC or SEP were the most effective to reduce ABS incidence (61, 54, and 36% reduction, respectively, concerning uncoated control fruit) and severity (28, 12 and 22% reduction, respectively), while only HPMC–BW coatings formulated with SEP significantly reduced ABS incidence (50% reduction) and severity (36% reduction). HPMC–OA and HPMC–BW coatings containing 2% PBC or 0.1% SEP were selected to evaluate their effect on the weight loss, firmness and respiration rate of healthy ‘Rojo Brillante’ persimmons cold-stored at 1 °C and 90% relative humidity (RH) for 15 and 30 days, followed by 7 days of shelf life at 20 °C. HPMC–BW coatings were more effective in reducing fruit weight and firmness losses than HPMC–OA coatings, while all antifungal coatings significantly reduced fruit respiration. Overall, the HPMC–BW edible coating that contains SEP could be a promising postharvest treatment to control ABS and maintain the quality of cold-stored ‘Rojo Brillante’ persimmons.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 818
Author(s):  
Katy Díaz ◽  
Enrique Werner ◽  
Ximena Besoain ◽  
Susana Flores ◽  
Viviana Donoso ◽  
...  

The aim of this study was to synthesize a series of novel and known dihydrocarvone-hybrid derivatives (2–9) and to evaluate mycelial growth activity of hybrid molecules against two strains of Monilinia fructicola, as well as their toxicity. Dihydrocarvone-hybrid derivatives have been synthesized under sonication conditions and characterized by FTIR, NMR, and HRMS. Antifungal efficacy against both strains of M. fructicola was determined by half maximal effective concentration (EC50) and toxicity using the brine shrimp lethality test (BSLT). Among the synthesized compounds, 7 and 8 showed the best activity against both strains of M. fructicola with EC50 values of 148.1 and 145.9 µg/mL for strain 1 and 18.1 and 15.7 µg/mL for strain 2, respectively, compared to BC 1000® (commercial organic fungicide) but lower than Mystic® 520 SC. However, these compounds showed low toxicity values, 910 and 890 µg/mL, respectively, compared to Mystic® 520 SC, which was highly toxic. Based on the results, these hybrid compounds could be considered for the development of more active, less toxic, and environmentally friendly antifungal agents against phytopathogenic fungi.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Sule Gunaydin ◽  
Hakan Karaca ◽  
Lluís Palou ◽  
Beatriz de la Fuente ◽  
María B. Pérez-Gago

The influence of hydroxypropyl methylcellulose- (HPMC-) beeswax (BW) composite edible coatings formulated with or without food additives with antifungal properties on physicochemical and sensory properties of plums(Prunus salicina)cv. “Friar” stored for 11 and 22 d at 1°C followed by a shelf life period of 5 d at 20°C was evaluated. Food preservatives selected from previous research included potassium sorbate (PS), sodium methyl paraben (SMP), and sodium ethyl paraben (SEP). Emulsions had 7% of total solid content and were prepared with glycerol and stearic acid as plasticizer and emulsifier, respectively. All the coatings reduced plum weight and firmness loss and coated fruit showed higher titratable acidity, soluble solids content, and hue angle values at the end of the storage period. In addition, physiological disorders such as flesh browning and bleeding were reduced in coated samples compared to uncoated controls. Paraben-based coatings were the most effective in controlling weight loss and the SMP-based coating was the most effective in maintaining plum firmness. Respiration rate, sensory flavor, off-flavors, and fruit appearance were not adversely affected by the application of antifungal coatings. Overall, these results demonstrated the potential of selected edible coatings containing antifungal food additives to extend the postharvest life of plums, although further studies should focus on improving some properties of the coatings to enhance gas barrier properties and further increase storability.


Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 730
Author(s):  
Victoria Martínez-Blay ◽  
María B. Pérez-Gago ◽  
Beatriz de la Fuente ◽  
Rosario Carbó ◽  
Lluís Palou

The in vitro antifungal activity of various generally recognized as safe (GRAS) salts against Colletotrichum gloeosporioides, the causal agent of citrus postharvest anthracnose, was evaluated as mycelial growth reduction on potato dextrose agar (PDA) dishes amended with salt aqueous solutions at different concentrations. The most effective treatments [0.2% ammonium carbonate (AC), 2% potassium sorbate (PS), 0.2% potassium carbonate (PC), 0.1% sodium methylparaben (SMP), 0.1% sodium ethylparaben (SEP), 2% sodium benzoate (SB) and 2% potassium silicate (PSi)] were selected as antifungal ingredients of composite edible coatings formulated with hydroxypropyl methylcellulose (HPMC)-beeswax (BW) matrixes. Stable coatings containing these salts were applied in in vivo curative experiments to “Nadorcott” mandarins and “Valencia” oranges artificially inoculated with C. gloeosporioides and those containing 2% PS, 2% SB and 2% PSi were the most effective to reduce anthracnose severity with respect to control fruit (up to 70% on mandarins). The effect of these selected coatings on the quality of non-inoculated and cold-stored “Valencia” oranges was determined after 28 and 56 days at 5 °C and 90% RH, followed by 7 days of shelf life at 20 °C. None of the coatings significantly reduced weight loss of coated oranges, but they modified their internal atmosphere, increasing the CO2 content. Overall, the coatings did not adversely affect the physicochemical and sensory attributes of the fruit.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Wengang Li ◽  
Xiuhua Zhao ◽  
Xiaoli Sun ◽  
Yuangang Zu ◽  
Ying Liu ◽  
...  

TCD is a kind of organic acid that is isolated from cinnamon bark or benzoin. TCD has significant antioxidant activity and is widely used in pharmaceutical, cosmetic, and food additives. But TCD has shortcomings of low bioavailability due to poor water solubility. Therefore, we use ethanol as a solvent, deionized water as antisolvent, and hydroxypropyl methylcellulose (HPMC) as the surfactant to prepare TCD nanoparticle powder. The optimum preparation conditions were determined as follows: TCD-ethanol solution concentration was 170 mg/mL, the volume ratio of antisolvent was 4 times that of solvent, and the amount of the surfactant was 0.3% stirred for 10 min by 2500 rpm; TCD nanoparticle with a mean particle size (MPS) of130±12.5 nm is obtained under the optimum conditions. SEM, FT-IR, LC-MS/MS, XRD, and DSC were used to characterize the TCD nanoparticle. The results showed that the chemical structure of TCD nanoparticle was not changed, but the crystallization was significantly reduced. Solubility, dissolution rate, antioxidant activity, the in vitro transdermal penetration, and bioavailability of TCD nanoparticles were all much better than these of the raw TCD. These results suggested that TCD nanoparticle might have potential value to become a new oral or transdermal TCD formulation with high bioavailability.


1991 ◽  
Vol 53 (1) ◽  
pp. 144-151 ◽  
Author(s):  
Mamoru YOKOO ◽  
Tadashi ARIKA ◽  
Yoshiro SOH

Sign in / Sign up

Export Citation Format

Share Document