scholarly journals Thermal inactivation of Salmonella, Shiga toxin-producing Escherichia coli, Listeria monocytogenes, and a surrogate (Pediococcus acidilactici) on raisins, apricot halves, and macadamia nuts using vacuum-steam pasteurization

2020 ◽  
Vol 333 ◽  
pp. 108814 ◽  
Author(s):  
Jennifer C. Acuff ◽  
Jian Wu ◽  
Claire Marik ◽  
Kim Waterman ◽  
Daniel Gallagher ◽  
...  
2014 ◽  
Vol 77 (10) ◽  
pp. 1768-1772 ◽  
Author(s):  
ANA CAROLINA B. REZENDE ◽  
MARIA CRYSTINA IGARASHI ◽  
MARIA TERESA DESTRO ◽  
BERNADETTE D. G. M. FRANCO ◽  
MARIZA LANDGRAF

This study evaluated the effects of irradiation on the reduction of Shiga toxin–producing Escherichia coli (STEC), Salmonella strains, and Listeria monocytogenes, as well as on the sensory characteristics of minimally processed spinach. Spinach samples were inoculated with a cocktail of three strains each of STEC, Salmonella strains, and L. monocytogenes, separately, and were exposed to gamma radiation doses of 0, 0.2, 0.4, 0.6, 0.8, and 1.0 kGy. Samples that were exposed to 0.0, 1.0, and 1.5 kGy and kept under refrigeration (4°C) for 12 days were submitted to sensory analysis. D10-values ranged from 0.19 to 0.20 kGy for Salmonella and from 0.20 to 0.21 for L. monocytogenes; for STEC, the value was 0.17 kGy. Spinach showed good acceptability, even after exposure to 1.5 kGy. Because gamma radiation reduced the selected pathogens without causing significant changes in the quality of spinach leaves, it may be a useful method to improve safety in the fresh produce industry.


Meat Science ◽  
2014 ◽  
Vol 96 (1) ◽  
pp. 484-485 ◽  
Author(s):  
A.M. King ◽  
R.P. McMinn ◽  
J.J. Sindelar ◽  
K.A. Glass ◽  
A.L. Milkowski ◽  
...  

2015 ◽  
Vol 78 (8) ◽  
pp. 1467-1471 ◽  
Author(s):  
EMEFA ANGELICA MONU ◽  
MALCOND VALLADARES ◽  
DORIS H. D'SOUZA ◽  
P. MICHAEL DAVIDSON

Produce has been associated with a rising number of foodborne illness outbreaks. While much produce is consumed raw, some is treated with mild heat, such as blanching or cooking. The objectives of this research were to compare the thermal inactivation kinetics of Listeria monocytogenes, Salmonella enterica, Shiga toxin–producing Escherichia coli (STEC) O157:H7, and non-O157 STEC in phosphate-buffered saline (PBS; pH 7.2) and a spinach homogenate and to provide an estimate of the safety of mild heat processes for spinach. Five individual strains of S. enterica, L. monocytogenes, STEC O157:H7, and non-O157 STEC were tested in PBS in 2-ml glass vials, and cocktails of the organisms were tested in blended spinach in vacuum-sealed bags. For Listeria and Salmonella at 56 to 60°C, D-values in PBS ranged from 4.42 ± 0.94 to 0.35 ± 0.03 min and 2.11 ± 0.14 to 0.16 ± 0.03 min, respectively. D-values at 54 to 58°C were 5.18 ± 0.21 to 0.53 ± 0.04 min for STEC O157:H7 and 5.01 ± 0.60 to 0.60 ± 0.13 min for non-O157 STEC. In spinach at 56 to 60°C, Listeria D-values were 11.77 ± 2.18 to 1.22 ± 0.12 min and Salmonella D-values were 3.51 ± 0.06 to 0.47 ± 0.06 min. D-values for STEC O157:H7 and non-O157 STEC were 7.21 ± 0.17 to 1.07 ± 0.11 min and 5.57 ± 0.38 to 0.99 ± 0.07 min, respectively, at 56 to 60°C. In spinach, z-values were 4.07 ± 0.16, 4.59 ± 0.26, 4.80 ± 0.92, and 5.22 ± 0.20°C for Listeria, Salmonella, STEC O157:H7, and non-O157 STEC, respectively. Results indicated that a mild thermal treatment of blended spinach at 70°C for less than 1 min would result in a 6-log reduction of all pathogens tested. These findings may assist the food industry in the design of suitable mild thermal processes to ensure food safety.


2020 ◽  
Vol 83 (5) ◽  
pp. 865-873
Author(s):  
ANNA C. S. PORTO-FETT ◽  
LAURA E. SHANE ◽  
BRADLEY A. SHOYER ◽  
MANUELA OSORIA ◽  
YANGJIN JUNG ◽  
...  

ABSTRACT We evaluated high pressure processing to lower levels of Shiga toxin–producing Escherichia coli (STEC) and Listeria monocytogenes inoculated into samples of plant or beef burgers. Multistrain cocktails of STEC and L. monocytogenes were separately inoculated (∼7.0 log CFU/g) into plant burgers or ground beef. Refrigerated (i.e., 4°C) or frozen (i.e., −20°C) samples (25 g each) were subsequently exposed to 350 MPa for up to 9 or 18 min or 600 MPa for up to 4.5 or 12 min. When refrigerated plant or beef burger samples were treated at 350 MPa for up to 9 min, levels of STEC were reduced by ca. 0.7 to 1.3 log CFU/g. However, when refrigerated plant or beef burger samples were treated at 350 MPa for up to 9 min, levels of L. monocytogenes remained relatively unchanged (ca. ≤0.3-log CFU/g decrease) in plant burger samples but were reduced by ca. 0.3 to 2.0 log CFU/g in ground beef. When refrigerated plant or beef burger samples were treated at 600 MPa for up to 4.5 min, levels of STEC and L. monocytogenes were reduced by ca. 0.7 to 4.1 and ca. 0.3 to 5.6 log CFU/g, respectively. Similarly, when frozen plant and beef burger samples were treated at 350 MPa up to 18 min, reductions of ca. 1.7 to 3.6 and ca. 0.6 to 3.6 log CFU/g in STEC and L. monocytogenes numbers, respectively, were observed. Exposure of frozen plant or beef burger samples to 600 MPa for up to 12 min resulted in reductions of ca. 2.4 to 4.4 and ca. 1.8 to 3.4 log CFU/g in levels of STEC and L. monocytogenes, respectively. Via empirical observation, pressurization did not adversely affect the color of plant burger samples, whereas appreciable changes in color were observed in pressurized ground beef. These data confirm that time and pressure levels already validated for control of STEC and L. monocytogenes in ground beef will likely be equally effective toward these same pathogens in plant burgers without causing untoward effects on product color. HIGHLIGHTS


2020 ◽  
Vol 9 (49) ◽  
Author(s):  
Gregor Fiedler ◽  
Jan Kabisch ◽  
Erik Brinks ◽  
Sabrina Sprotte ◽  
Christina Boehnlein ◽  
...  

ABSTRACT The complete genome sequence of a Shiga toxin-producing Escherichia coli (STEC) O26:H11 strain, MBT-5 (sequence type 21 [ST21], stx1a, stx2a, eae, ehxA), and two draft genome sequences of Listeria monocytogenes strains MBT-6 and MBT-7 belonging to the virulent sequence types 1 (ST1, clonal complex 1 [CC1]) and 59 (ST59, CC59), respectively, were determined. The strains were isolated in 2015 from ready-to-eat mixed greens in Germany.


Sign in / Sign up

Export Citation Format

Share Document