The efficacy of individual and combined commercial protective cultures against Listeria monocytogenes, Salmonella, O157 and non-O157 shiga toxin-producing Escherichia coli in growth medium and raw milk

Food Control ◽  
2020 ◽  
Vol 109 ◽  
pp. 106924 ◽  
Author(s):  
Sulaiman F. Aljasir ◽  
Catherine Gensler ◽  
Lang Sun ◽  
Dennis J. D'Amico
2014 ◽  
Vol 77 (10) ◽  
pp. 1768-1772 ◽  
Author(s):  
ANA CAROLINA B. REZENDE ◽  
MARIA CRYSTINA IGARASHI ◽  
MARIA TERESA DESTRO ◽  
BERNADETTE D. G. M. FRANCO ◽  
MARIZA LANDGRAF

This study evaluated the effects of irradiation on the reduction of Shiga toxin–producing Escherichia coli (STEC), Salmonella strains, and Listeria monocytogenes, as well as on the sensory characteristics of minimally processed spinach. Spinach samples were inoculated with a cocktail of three strains each of STEC, Salmonella strains, and L. monocytogenes, separately, and were exposed to gamma radiation doses of 0, 0.2, 0.4, 0.6, 0.8, and 1.0 kGy. Samples that were exposed to 0.0, 1.0, and 1.5 kGy and kept under refrigeration (4°C) for 12 days were submitted to sensory analysis. D10-values ranged from 0.19 to 0.20 kGy for Salmonella and from 0.20 to 0.21 for L. monocytogenes; for STEC, the value was 0.17 kGy. Spinach showed good acceptability, even after exposure to 1.5 kGy. Because gamma radiation reduced the selected pathogens without causing significant changes in the quality of spinach leaves, it may be a useful method to improve safety in the fresh produce industry.


2016 ◽  
Vol 5 (1) ◽  
Author(s):  
Selene Marozzi ◽  
Paola De Santis ◽  
Sarah Lovari ◽  
Roberto Condoleo ◽  
Stefano Bilei ◽  
...  

In recent years, the incidence of foodborne diseases caused by shiga toxin-producing <em>Escherichia coli</em> (STEC) has increased globally. For this reason, within the specific regional control plan for the detection of STEC in food products in Italy, the presence of STEC in unpasteurized milk cheeses was investigated. In total 203 samples obtained from March 2011 to December 2013 were analysed, with two standard methods (ISO 16654:2001 and ISO 13136:2012). Two strains of <em>E. coli</em> O157 were isolated (2/161, 1.2%) but did not carry any virulence-associated genes and 22 <em>stx</em>-positive samples (22/146, 15.1%) were detected in enrichment cultures, mostly from ovine cheeses. Only two strains isolated from different ovine cheeses carried <em>stx</em> gene and none of these was <em>eae</em>-positive. This study confirms the presence of <em>stx</em>-positive <em>E. coli</em> and suggests that this type of food cannot be excluded as a potential vehicle of STEC.


2010 ◽  
Vol 73 (1) ◽  
pp. 88-91 ◽  
Author(s):  
C. ZWEIFEL ◽  
N. GIEZENDANNER ◽  
S. CORTI ◽  
G. KRAUSE ◽  
L. BEUTIN ◽  
...  

Food is an important vehicle for transmission of Shiga toxin–producing Escherichia coli (STEC). To assess the potential public health impact of STEC in Swiss raw milk cheese produced from cow's, goat's, and ewe's milk, 1,422 samples from semihard or hard cheese and 80 samples from soft cheese were examined for STEC, and isolated strains were further characterized. By PCR, STEC was detected after enrichment in 5.7% of the 1,502 raw milk cheese samples collected at the producer level. STEC-positive samples comprised 76 semihard, 8 soft, and 1 hard cheese. By colony hybridization, 29 STEC strains were isolated from 24 semihard and 5 soft cheeses. Thirteen of the 24 strains typeable with O antisera belonged to the serogroups O2, O22, and O91. More than half (58.6%) of the 29 strains belonged to O:H serotypes previously isolated from humans, and STEC O22:H8, O91:H10, O91:H21, and O174:H21 have also been identified as agents of hemolytic uremic syndrome. Typing of Shiga toxin genes showed that stx1 was only found in 2 strains, whereas 27 strains carried genes encoding for the Stx2 group, mainly stx2 and stx2vh-a/b. Production of Stx2 and Stx2vh-a/b subtypes might be an indicator for a severe outcome in patients. Nine strains harbored hlyA (enterohemorrhagic E. coli hemolysin), whereas none tested positive for eae (intimin). Consequently, semihard and hard raw milk cheese may be a potential source of STEC, and a notable proportion of the isolated non-O157 STEC strains belonged to serotypes or harbored Shiga toxin gene variants associated with human infections.


Meat Science ◽  
2014 ◽  
Vol 96 (1) ◽  
pp. 484-485 ◽  
Author(s):  
A.M. King ◽  
R.P. McMinn ◽  
J.J. Sindelar ◽  
K.A. Glass ◽  
A.L. Milkowski ◽  
...  

2008 ◽  
Vol 91 (7) ◽  
pp. 2561-2565 ◽  
Author(s):  
R. Stephan ◽  
S. Schumacher ◽  
S. Corti ◽  
G. Krause ◽  
J. Danuser ◽  
...  

2020 ◽  
Vol 83 (5) ◽  
pp. 865-873
Author(s):  
ANNA C. S. PORTO-FETT ◽  
LAURA E. SHANE ◽  
BRADLEY A. SHOYER ◽  
MANUELA OSORIA ◽  
YANGJIN JUNG ◽  
...  

ABSTRACT We evaluated high pressure processing to lower levels of Shiga toxin–producing Escherichia coli (STEC) and Listeria monocytogenes inoculated into samples of plant or beef burgers. Multistrain cocktails of STEC and L. monocytogenes were separately inoculated (∼7.0 log CFU/g) into plant burgers or ground beef. Refrigerated (i.e., 4°C) or frozen (i.e., −20°C) samples (25 g each) were subsequently exposed to 350 MPa for up to 9 or 18 min or 600 MPa for up to 4.5 or 12 min. When refrigerated plant or beef burger samples were treated at 350 MPa for up to 9 min, levels of STEC were reduced by ca. 0.7 to 1.3 log CFU/g. However, when refrigerated plant or beef burger samples were treated at 350 MPa for up to 9 min, levels of L. monocytogenes remained relatively unchanged (ca. ≤0.3-log CFU/g decrease) in plant burger samples but were reduced by ca. 0.3 to 2.0 log CFU/g in ground beef. When refrigerated plant or beef burger samples were treated at 600 MPa for up to 4.5 min, levels of STEC and L. monocytogenes were reduced by ca. 0.7 to 4.1 and ca. 0.3 to 5.6 log CFU/g, respectively. Similarly, when frozen plant and beef burger samples were treated at 350 MPa up to 18 min, reductions of ca. 1.7 to 3.6 and ca. 0.6 to 3.6 log CFU/g in STEC and L. monocytogenes numbers, respectively, were observed. Exposure of frozen plant or beef burger samples to 600 MPa for up to 12 min resulted in reductions of ca. 2.4 to 4.4 and ca. 1.8 to 3.4 log CFU/g in levels of STEC and L. monocytogenes, respectively. Via empirical observation, pressurization did not adversely affect the color of plant burger samples, whereas appreciable changes in color were observed in pressurized ground beef. These data confirm that time and pressure levels already validated for control of STEC and L. monocytogenes in ground beef will likely be equally effective toward these same pathogens in plant burgers without causing untoward effects on product color. HIGHLIGHTS


2012 ◽  
Vol 79 (1) ◽  
pp. 150-158 ◽  
Author(s):  
Stéphane D. Miszczycha ◽  
Frédérique Perrin ◽  
Sarah Ganet ◽  
Emmanuel Jamet ◽  
Fanny Tenenhaus-Aziza ◽  
...  

ABSTRACTShiga toxin-producingEscherichia coli(STEC) is an important cause of food-borne illness. The public health implication of the presence of STEC in dairy products remains unclear. Knowledge of STEC behavior in cheeses would help to evaluate the human health risk. The aim of our study was to observe the growth and survival of experimentally inoculated STEC strains in raw-milk cheeses manufactured and ripened according to five technological schemes: blue-type cheese, uncooked pressed cheese with long ripening and with short ripening steps, cooked cheese, and lactic cheese. Cheeses were contaminated with different STEC serotypes (O157:H7, O26:H11, O103:H2, and O145:H28) at the milk preparation stage. STEC growth and survival were monitored on selective media during the entire manufacturing process. STEC grew (2 to 3 log10CFU · g−1) in blue-type cheese and the two uncooked pressed cheeses during the first 24 h of cheese making. Then, STEC levels progressively decreased in cheeses that were ripened for more than 6 months. In cooked cheese and in lactic cheese with a long acidic coagulation step (pH < 4.5), STEC did not grow. Their levels decreased after the cooking step in the cooked cheese and after the coagulation step in the lactic cheese, but STEC was still detectable at the end of ripening and storage. A serotype effect was found: in all cheeses studied, serotype O157:H7 grew less strongly and was less persistent than the others serotypes. This study improves knowledge of the behavior of different STEC serotypes in various raw-milk cheeses.


2020 ◽  
Vol 9 (49) ◽  
Author(s):  
Gregor Fiedler ◽  
Jan Kabisch ◽  
Erik Brinks ◽  
Sabrina Sprotte ◽  
Christina Boehnlein ◽  
...  

ABSTRACT The complete genome sequence of a Shiga toxin-producing Escherichia coli (STEC) O26:H11 strain, MBT-5 (sequence type 21 [ST21], stx1a, stx2a, eae, ehxA), and two draft genome sequences of Listeria monocytogenes strains MBT-6 and MBT-7 belonging to the virulent sequence types 1 (ST1, clonal complex 1 [CC1]) and 59 (ST59, CC59), respectively, were determined. The strains were isolated in 2015 from ready-to-eat mixed greens in Germany.


Sign in / Sign up

Export Citation Format

Share Document