Validation of D- and Z-values for Listeria monocytogenes, Salmonella and Shiga-toxin producing Escherichia coli in ready-to-eat meat and poultry products

Meat Science ◽  
2014 ◽  
Vol 96 (1) ◽  
pp. 484-485 ◽  
Author(s):  
A.M. King ◽  
R.P. McMinn ◽  
J.J. Sindelar ◽  
K.A. Glass ◽  
A.L. Milkowski ◽  
...  
2014 ◽  
Vol 77 (10) ◽  
pp. 1768-1772 ◽  
Author(s):  
ANA CAROLINA B. REZENDE ◽  
MARIA CRYSTINA IGARASHI ◽  
MARIA TERESA DESTRO ◽  
BERNADETTE D. G. M. FRANCO ◽  
MARIZA LANDGRAF

This study evaluated the effects of irradiation on the reduction of Shiga toxin–producing Escherichia coli (STEC), Salmonella strains, and Listeria monocytogenes, as well as on the sensory characteristics of minimally processed spinach. Spinach samples were inoculated with a cocktail of three strains each of STEC, Salmonella strains, and L. monocytogenes, separately, and were exposed to gamma radiation doses of 0, 0.2, 0.4, 0.6, 0.8, and 1.0 kGy. Samples that were exposed to 0.0, 1.0, and 1.5 kGy and kept under refrigeration (4°C) for 12 days were submitted to sensory analysis. D10-values ranged from 0.19 to 0.20 kGy for Salmonella and from 0.20 to 0.21 for L. monocytogenes; for STEC, the value was 0.17 kGy. Spinach showed good acceptability, even after exposure to 1.5 kGy. Because gamma radiation reduced the selected pathogens without causing significant changes in the quality of spinach leaves, it may be a useful method to improve safety in the fresh produce industry.


2020 ◽  
Vol 83 (5) ◽  
pp. 865-873
Author(s):  
ANNA C. S. PORTO-FETT ◽  
LAURA E. SHANE ◽  
BRADLEY A. SHOYER ◽  
MANUELA OSORIA ◽  
YANGJIN JUNG ◽  
...  

ABSTRACT We evaluated high pressure processing to lower levels of Shiga toxin–producing Escherichia coli (STEC) and Listeria monocytogenes inoculated into samples of plant or beef burgers. Multistrain cocktails of STEC and L. monocytogenes were separately inoculated (∼7.0 log CFU/g) into plant burgers or ground beef. Refrigerated (i.e., 4°C) or frozen (i.e., −20°C) samples (25 g each) were subsequently exposed to 350 MPa for up to 9 or 18 min or 600 MPa for up to 4.5 or 12 min. When refrigerated plant or beef burger samples were treated at 350 MPa for up to 9 min, levels of STEC were reduced by ca. 0.7 to 1.3 log CFU/g. However, when refrigerated plant or beef burger samples were treated at 350 MPa for up to 9 min, levels of L. monocytogenes remained relatively unchanged (ca. ≤0.3-log CFU/g decrease) in plant burger samples but were reduced by ca. 0.3 to 2.0 log CFU/g in ground beef. When refrigerated plant or beef burger samples were treated at 600 MPa for up to 4.5 min, levels of STEC and L. monocytogenes were reduced by ca. 0.7 to 4.1 and ca. 0.3 to 5.6 log CFU/g, respectively. Similarly, when frozen plant and beef burger samples were treated at 350 MPa up to 18 min, reductions of ca. 1.7 to 3.6 and ca. 0.6 to 3.6 log CFU/g in STEC and L. monocytogenes numbers, respectively, were observed. Exposure of frozen plant or beef burger samples to 600 MPa for up to 12 min resulted in reductions of ca. 2.4 to 4.4 and ca. 1.8 to 3.4 log CFU/g in levels of STEC and L. monocytogenes, respectively. Via empirical observation, pressurization did not adversely affect the color of plant burger samples, whereas appreciable changes in color were observed in pressurized ground beef. These data confirm that time and pressure levels already validated for control of STEC and L. monocytogenes in ground beef will likely be equally effective toward these same pathogens in plant burgers without causing untoward effects on product color. HIGHLIGHTS


2020 ◽  
Vol 9 (49) ◽  
Author(s):  
Gregor Fiedler ◽  
Jan Kabisch ◽  
Erik Brinks ◽  
Sabrina Sprotte ◽  
Christina Boehnlein ◽  
...  

ABSTRACT The complete genome sequence of a Shiga toxin-producing Escherichia coli (STEC) O26:H11 strain, MBT-5 (sequence type 21 [ST21], stx1a, stx2a, eae, ehxA), and two draft genome sequences of Listeria monocytogenes strains MBT-6 and MBT-7 belonging to the virulent sequence types 1 (ST1, clonal complex 1 [CC1]) and 59 (ST59, CC59), respectively, were determined. The strains were isolated in 2015 from ready-to-eat mixed greens in Germany.


2018 ◽  
Vol 125 ◽  
pp. 463-467
Author(s):  
Luciana Belén Hernandez ◽  
Jimena Soledad Cadona ◽  
Martín Christensen ◽  
Daniel Fernández ◽  
Nora Lía Padola ◽  
...  

2020 ◽  
Vol 83 (3) ◽  
pp. 434-442 ◽  
Author(s):  
JOHN B. LUCHANSKY ◽  
BRADLEY A. SHOYER ◽  
YANGJIN JUNG ◽  
LAURA E. SHANE ◽  
MANUELA OSORIA ◽  
...  

ABSTRACT The viability of Shiga toxin–producing Escherichia coli (STEC), Salmonella, and Listeria monocytogenes within plant- and beef-based burgers was monitored during storage and cooking. When inoculated (ca. 3.5 log CFU/g) into 15-g portions of plant- or beef-based burgers, levels of STEC and Salmonella decreased slightly (≤0.5-log decrease) in both types of burgers when stored at 4°C, but increased ca. 2.4 and 0.8 log CFU/g, respectively, in plant-based burgers but not beef-based burgers (≤1.2-log decrease), after 21 days at 10°C. For L. monocytogenes, levels increased by ca. 1.3 and 2.6 log CFU/g in plant burgers after 21 days at 4 and 10°C, respectively, whereas pathogen levels decreased slightly (≤0.9-log decrease) in beef burgers during storage at 4 and 10°C. Regarding cooking, burgers (ca. 114 g each) were inoculated with ca. 7.0 log CFU/g STEC, Salmonella, or L. monocytogenes and cooked in a sauté pan. Cooking plant- or beef-based burgers to 62.8°C (145°F), 68.3°C (155°F), or 73.9°C (165°F) delivered reductions ranging from ca. 4.7 to 6.8 log CFU/g for STEC, ca. 4.4 to 7.0 log CFU/g for L. monocytogenes, and ca. 3.5 to 6.7 log CFU/g for Salmonella. In summary, the observation that levels of all three pathogens increased by ca. 1.0 to ca. 2.5 log CFU/g in plant-based burgers when stored at an abusive temperature (10°C) highlights the importance of proper storage (4°C) to lessen risk. However, because all three pathogens responded similarly to heat in plant-based as in beef-based burgers, well-established cooking parameters required to eliminate STEC, Salmonella, or L. monocytogenes from ground beef should be as effective for controlling cells of these same pathogens in a burger made with plant-sourced protein. HIGHLIGHTS


Sign in / Sign up

Export Citation Format

Share Document