Characterisation of Salmonella enterica clones carrying mcr-1 plasmids in meat products and patients in Northern Thailand using long read sequencing

Author(s):  
Prapas Patchanee ◽  
Nipa Chokesajjawatee ◽  
Pannita Santiyanont ◽  
Phongsakorn Chuammitri ◽  
Manu Deeudom ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Lili Li ◽  
Rikke Heidemann Olsen ◽  
Anhua Song ◽  
Jian Xiao ◽  
Chong Wang ◽  
...  

Extended-spectrum β-lactamases (ESBLs) production and (fluoro)quinolone (FQ) resistance among Salmonella pose a public health threat. The objective of this study was the phenotypic and genotypic characterization of an ESBL-producing and nalidixic acid-resistant Salmonella enterica serovar Gloucester isolate (serotype 4:i:l,w) of sequence type 34 (ST34) from ready-to-eat (RTE) meat products in China. Whole-genome short and long read sequencing (HiSeq and MinION) results showed that it contained blaCTX–M–55, qnrS1, and tetB genes, with blaCTX–M–55 and qnrS1 located in chromosomal IS26-mediated composite transposon (IS26–qnrS1–IS3–Tn3–orf–blaCTX–M–55–ISEcp1–IS26). The same genetic structure was found in the chromosome of S. enterica subsp. enterica serovar Typhimurium strain and in several plasmids of Escherichia coli, indicating that the IS26-mediated composite transposon in the chromosome of S. Gloucester may originate from plasmids of E. coli and possess the ability to disseminate to Salmonella and other bacterial species. Besides, the structural unit qnrS1–IS3–Tn3–orf–blaCTX–M–55 was also observed to be linked with ISKpn19 in both the chromosomes and plasmids of various bacteria species, highlighting the contribution of the insertion sequences (IS26 and ISKpn19) to the co-dissemination of blaCTX–M–55 and qnrS1. To our knowledge, this is the first description of chromosomal blaCTX–M–55 and qnrS in S. Gloucester from RTE meat products. Our work expands the host range and provides additional evidence of the co-transfer of blaCTX–M–55 and qnrS1 among different species of Salmonella through the food chain.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2177
Author(s):  
Joanna Pławińska-Czarnak ◽  
Karolina Wódz ◽  
Magdalena Kizerwetter-Świda ◽  
Tomasz Nowak ◽  
Janusz Bogdan ◽  
...  

Background: Globally, Salmonella enterica is one of the leading causes of foodborne illness in humans. Food of animal origin is obligatorily tested for the presence of this pathogen. Unfortunately, in meat and meat products, this is often hampered by the presence of background microbiota, which may present as false-positive Salmonella. Methods: For the identification of Salmonella spp. from meat samples of beef, pork, and poultry, the authorized detection method is PN-EN ISO 6579-1:2017-04 with the White–Kauffmann–Le Minor scheme, two biochemical tests: API 20E and VITEK II, and a real-time PCR-based technique. Results: Out of 42 presumptive strains of Salmonella, 83.3% Salmonella enterica spp. enterica, 14.3% Citrobacter braakii, and 12.4% Proteus mirabilis were detected from 180 meat samples. Conclusions: Presumptive strains of Salmonella should be identified based on genotypic properties such as DNA-based methods. The aim of this study was the isolation and identification of Salmonella spp. from miscellaneous meat sorts: beef, pork, and poultry.


2021 ◽  
pp. 763-789
Author(s):  
Serisha Naidoo ◽  
Albertus Kotze Basson ◽  
Patrick Butaye ◽  
Evelyn Madoroba

2018 ◽  
Vol 7 (23) ◽  
Author(s):  
Narjol González-Escalona ◽  
Kuan Yao ◽  
Maria Hoffmann

Here we report the genome sequence of Salmonella enterica serovar Richmond strain CFSAN000191, isolated from tilapia from Thailand in 2005. The genome was determined by a combination of long-read and short-read sequencing.


2019 ◽  
Vol 8 (28) ◽  
Author(s):  
Narjol Gonzalez-Escalona ◽  
J. R. Aguirre-Sánchez ◽  
J. R. Ibarra-Rodríguez ◽  
C. Chaidez-Quiroz ◽  
Jaime Martinez-Urtaza

Here, we report the genome sequences of three Salmonella enterica strains belonging to serovars Weltevreden (CFSAN047349), Saintpaul (CFSAN047351), and Thompson (CFSAN047352), isolated from river water in Sinaloa, Mexico. The genomes were closed by a combination of long-read and short-read sequencing. The strain sequence types (STs) are ST365, ST50, and ST26, respectively.


2020 ◽  
Vol 9 (49) ◽  
Author(s):  
Vasiliy Arefiev ◽  
Ganna Kovalenko ◽  
Maciej Frant ◽  
Tetiana Chumachenko ◽  
Yuliia Polyvianna ◽  
...  

ABSTRACT The complete genome of Salmonella enterica subsp. enterica serovar Kottbus strain Kharkiv (serogroup C2-C3), which was isolated from a commercial pork production facility in Kharkiv, Ukraine, was assembled using long-read Nanopore sequences. A single circular contig (4,799,045 bp) comprised a complete chromosome encoding antibiotic resistance, highlighting the risk of cross-species livestock and human infection.


2007 ◽  
Vol 70 (1) ◽  
pp. 22-29 ◽  
Author(s):  
SHIN-HEE KIM ◽  
CHENG-I WEI

The biofilm-forming capability of Salmonella enterica serotypes Typhimurium and Heidelberg, Pseudomonas aeruginosa, Listeria monocytogenes, Escherichia coli O157:H7, Klebsiella pneumoniae, and Acinetobacter baumannii isolated from humans, animal farms, and retail meat products was evaluated by using a microplate assay. The tested bacterial species showed interstrain variation in their capabilities to form biofilms. Strong biofilm-forming strains of S. enterica serotypes, E. coli O157: H7, P. aeruginosa, K. pneumoniae, and A. baumannii were resistant to at least four of the tested antibiotics. To understand their potential in forming biofilms in food-processing environments, the strong biofilm formers grown in beef, turkey, and lettuce broths were further investigated on stainless steel and glass surfaces. Among the tested strains, Salmonella Typhimurium phage type DT104 (Salmonella Typhimurium DT104) isolated from retail beef formed the strongest biofilm on stainless steel and glass in beef and turkey broths. K. pneumoniae, L. monocytogenes, and P. aeruginosa were also able to form strong biofilms on the tested surface materials. Salmonella Typhimurium DT104 developed a biofilm on stainless steel in beef and turkey broths through (i) initial attachment to the surface, (ii) formation of microcolonies, and (iii) biofilm maturation. These findings indicated that Salmonella Typhimurium DT104 along with other bacterial pathogens could be a source of cross-contamination during handling and processing of food.


Foods ◽  
2016 ◽  
Vol 5 (4) ◽  
pp. 74 ◽  
Author(s):  
Alexandre Lamas ◽  
José Miranda ◽  
Beatriz Vázquez ◽  
Alberto Cepeda ◽  
Carlos Franco

Sign in / Sign up

Export Citation Format

Share Document