The coupled effects of working fluid and solid wall on thermal performance of micro heat pipes

Author(s):  
Fun Liang Chang ◽  
Yew Mun Hung
2015 ◽  
Vol 789-790 ◽  
pp. 422-425
Author(s):  
Fun Liang Chang ◽  
Yew Mun Hung

Micro heat pipe is a two-phase heat transfer device offering effective high heat-flux removal in electronics cooling. Essentially, micro heat pipe relies on the phase change processes, namely evaporation and condensation, and the circulation of working fluid to function as heat transfer equipment. The vast applications of micro heat pipe in portable appliances necessitate its functionality under different orientations with respect to gravity. Therefore, its thermal performance is strongly related to its orientation. By incorporating solid wall conduction, together with the continuity, momentum, and energy equations of the working fluid, a mathematical model is developed to investigate the heat and fluid flow characteristics of inclined micro heat pipes. We investigate both the favorable and adverse effects of gravity on the circulation rate which is intimately related to the thermal performance of micro heat pipes. The effects of gravity, through the angle of inclination, on the circulation strength and heat transport capacity are analysed. This study serves as a useful analytical tool in the micro heat pipe design and performance analysis, associated with different inclinations and operating conditions.


2008 ◽  
Vol 12 (3) ◽  
pp. 91-102 ◽  
Author(s):  
Lutful Mahmood ◽  
Razzaq Akhanda

An experimental study of three different cross-sections (circular, semicircular and rectangular) of micro heat pipes having same hydraulic diameter (D= 3mm) is carried out at three different inclination angles (0?, 45?, 90?) using water as the working fluid. Evaporator section of the pipe is heated by an electric heater and the condenser section is cooled by water circulation in an annular space between the condenser section and the water jacket. Temperatures at different locations of the pipe are measured using five calibrated K type thermocouples. Heat supply is varied using a voltage regulator which is measured by a precision ammeter and a voltmeter. It is found that thermal performance tends to deteriorate as the micro heat pipe is flattened. Thus among all cross-sections of the pipes circular cross-section exhibits the best thermal performance followed by semicircular and rectangular cross-sections. Moreover maximum heat transfer capability of the pipes also decreases with decreasing of its inclination angle. A correlation is developed using all the gathered data of the present study to predict the heat transfer coefficient of micro heat pipes of different cross-sections placed at different inclination angles.


2020 ◽  
Vol 21 (3) ◽  
pp. 309
Author(s):  
Maryam Fallah Abbasi ◽  
Hossein Shokouhmand ◽  
Morteza Khayat

Electronic industries have always been trying to improve the efficiency of electronic devices with small dimensions through thermal management of this equipment, thus increasing the use of small thermal sinks. In this study micro heat pipes with triangular and square cross sections have been manufactured and tested. One of the main objectives is to obtain an understanding of micro heat pipes and their role in energy transmission with electrical double layer (EDL). Micro heat pipes are highly efficient heat transfer devices, which use the continuous evaporation/condensation of a suitable working fluid for two-phase heat transport in a closed system. Since the latent heat of vaporization is very large, heat pipes transport heat at small temperature difference, with high rates. Because of variety of advantage features these devices have found a number of applications both in space and terrestrial technologies. The theory of operation micro heat pipes with EDL is described and the micro heat pipe has been studied. The temperature distribution have achieved through five thermocouples installed on the body. Water and different solution mixture of water and ethanol have used to investigate effect of the electric double layer heat transfer. It was noticed that the electric double layer of ionized fluid has caused reduction of heat transfer.


1996 ◽  
Vol 118 (3) ◽  
pp. 740-746 ◽  
Author(s):  
H. B. Ma ◽  
G. P. Peterson

An experimental investigation was conducted and a test facility constructed to measure the capillary heat transport limit in small triangular grooves, similar to those used in micro heat pipes. Using methanol as the working fluid, the maximum heat transport and unit effective area heat transport were experimentally determined for ten grooved plates with varying groove widths, but identical apex angles. The experimental results indicate that there exists an optimum groove configuration, which maximizes the capillary pumping capacity while minimizing the combined effects of the capillary pumping pressure and the liquid viscous pressure losses. When compared with a previously developed analytical model, the experimental results indicate that the model can be used accurately to predict the heat transport capacity and maximum unit area heat transport when given the physical characteristics of the working fluid and the groove geometry, provided the proper heat flux distribution is known. The results of this investigation will assist in the development of micro heat pipes capable of operating at increased power levels with greater reliability.


2018 ◽  
Vol 143 ◽  
pp. 350-357 ◽  
Author(s):  
Manjinder Singh ◽  
Naresh Varma Datla ◽  
Sasidhar Kondaraju ◽  
Supreet Singh Bahga

2018 ◽  
Vol 91 ◽  
pp. 630-638 ◽  
Author(s):  
Mohammad Alhuyi Nazari ◽  
Mohammad H. Ahmadi ◽  
Roghayeh Ghasempour ◽  
Mohammad Behshad Shafii

Author(s):  
Manjinder Singh ◽  
Naresh Varma Datla ◽  
Supreet Singh Bahga ◽  
Sasidhar Kondaraju

Continuous increase in the integration density of microelectronic units necessitates the use of MHPs with enhanced thermal performance. Recently, the use of wettability gradients have been shown to enhance the heat transfer capacity of MHPs. In this paper, we present an optimization of axial wettability gradient to maximize the heat transfer capacity of the MHP. We use an experimentally validated mathematical model and interior point method to optimize the wettability gradient. For our analysis, we consider two cases wherein (i) the mass of working fluid is constrained, (ii) mass of working fluid is a design variable. Compared to MHP with uniform high wettability and filled with a fixed mass of working fluid, optimization of the wettability gradient leads to 65% enhancement in heat transfer capacity. Similar comparisons for MHP filled with variable mass of working fluid shows more than 90% increase in the maximum heat transfer capacity due to optimization of wettability gradient.


Energy ◽  
2021 ◽  
Vol 214 ◽  
pp. 118909
Author(s):  
Edmund Chong Jie Ng ◽  
Tze Cheng Kueh ◽  
Xin Wang ◽  
Ai Kah Soh ◽  
Yew Mun Hung

Author(s):  
Mehdi Taslimifar ◽  
Maziar Mohammadi ◽  
Ali Adibnia ◽  
Hossein Afshin ◽  
Mohammad Hassan Saidi ◽  
...  

Homogenous dispersing of nanoparticles in a base fluid is an excellent way to increase the thermal performance of heat transfer devices especially Heat Pipes (HPs). As a wickless, cheap and efficient heat pipe, Pulsating Heat Pipes (PHPs) are important candidates for thermal application considerations. In the present research an Open Loop Pulsating Heat Pipe (OLPHP) is fabricated and tested experimentally. The effects of working fluid namely, water, Silica Coated ferrofluid (SC ferrofluid), and ferrofluid without surface coating of nanoparticles (ferrofluid), charging ratio, heat input, and application of magnetic field on the overall thermal performance of the OLPHPs are investigated. Experimental results show that ferrofluid has better heat transport capability relative to SC ferrofluid. Furthermore, application of magnetic field improves the heat transfer performance of OLPHPs charged with both ferrofluids.


Sign in / Sign up

Export Citation Format

Share Document