scholarly journals A study of thermal performance change of cryogenic heat pipes by wick structures for wide range of working fluid filling ratio

Author(s):  
R Wanison ◽  
N Kimura ◽  
M Murakami
2017 ◽  
Vol 139 (9) ◽  
Author(s):  
M. Halimi ◽  
A. Abbas Nejad ◽  
M. Norouzi

Closed-loop pulsating heat pipes (CLPHPs) are a new type of two-phase heat transfer devices that can transfer considerable heat in a small space via two-phase vapor and liquid pulsating flow and work with various types of two-phase instabilities so the operating mechanism of CLPHP is not well understood. In this work, two CLPHPs, made of Pyrex, were manufactured to observe and investigate the flow regime that occurs during the operation of CLPHP and thermal performance of the device under different laboratory conditions. In general, various working fluids were used in filling ratios of 40%, 50%, and 60% in horizontal and vertical modes to investigate the effect of thermo-physical parameters, filling ratio, nanoparticles, gravity, CLPHP structure, and input heat flux on the thermal performance of CLPHP. The results indicate that three types of flow regime may be observed given laboratory conditions. Each flow regime exerts a different effect on the thermal performance of the device. There is an optimal filling ratio for each working fluid. The increased number of turns in CLPHP generally improves the thermal performance of the system reducing the effect of the type of the working fluid on the aforementioned performance. The adoption of copper nanoparticles, which positively affect fluid motion, decreases the thermal resistance of the system as much as 6.06–42.76% depending on laboratory conditions. Moreover, gravity brings about positive changes in the flow regime decreasing thermal resistance as much as 32.13–52.58%.


2014 ◽  
Vol 22 (04) ◽  
pp. 1450025 ◽  
Author(s):  
DONG SOO JANG ◽  
EUN-JI LEE ◽  
SANG HUN LEE ◽  
YONGCHAN KIM

This study presents the thermal performance of pulsating heat pipes (PHPs) using distilled water with mini- and microchannels. The PHPs were fabricated with the channels of square cross section which had hydraulic diameters ranged from 1.6 to 3.2 mm in minichannels and from 0.714 to 0.941 mm in microchannels. The performance of the PHPs was measured and analyzed by varying hydraulic diameter, number of turns, filling ratio, and input power. The filling ratio of the working fluid varied from 0% to 100%. The input power was controlled in the range between 3.6 and 150 W. The hydraulic diameter, number of turns, filling ratio, and input power showed strong influence on the performance of the PHP. In the PHP models with mini- and microchannels, optimum working conditions, such as filling ratio and heat input, were quite different according to channel size.


2019 ◽  
Vol 9 (9) ◽  
pp. 1877 ◽  
Author(s):  
M. Sarafraz ◽  
Iskander Tlili ◽  
Mohammad Abdul Baseer ◽  
Mohammad Safaei

In this article, an experimental study was performed to assess the potential thermal application of a new nanofluid comprising carbon nanoparticles dispersed in acetone inside an evacuated tube solar thermal collector. The effect of various parameters including the circulating volumetric flow of the collector, mass fraction of the nanoparticles, the solar irradiance, the tilt angle and the filling ratio values of the heat pipes on the thermal performance of the solar collector was investigated. It was found that with an increase in the flow rate of the working fluid within the system, the thermal efficiency of the system was improved. Additionally, the highest thermal performance and the highest temperature difference between the inlet and the outlet ports of the collector were achieved for the nanofluid at wt. % = 0.1. The best tilt angle and the filling ratio values of the collector were 30° and 60% and the maximum thermal efficiency of the collector was 91% for a nanofluid at wt. % = 0.1 and flow rate of 3 L/min.


2015 ◽  
Vol 645-646 ◽  
pp. 1032-1037
Author(s):  
Cong Ming Li ◽  
Yi Luo ◽  
Chuan Peng Zhou ◽  
Liang Liang Zou ◽  
Xiao Dong Wang ◽  
...  

There are several factors that affect heat transfer of heat pipe, for example, structure dimension, filling ratio and vacuum degree of charging. This paper studied the thermal conductivity of micro flat heat pipes (MFHPs) with different structure dimension and with different filling ratio, when the charging vacuum degree of MFHP was decided. When electric power was 2W or 4W, MFHPs with parallel grooves and nonparallel grooves, charged by working fluid with different filling ratio, were carried out. And the filling ratio is 30%, 40% and 50%, respectively. The better thermal performance of MFHP can be evaluated by lower thermal resistance and higher effective thermal conductivity. The experiment results show that MFHP has the highest effective thermal conductivity when the filling ratio is 40%; and the thermal performance of MFHP with nonparallel structure in axial direction is better than that of MFHP with parallel structure.


2018 ◽  
Vol 91 ◽  
pp. 630-638 ◽  
Author(s):  
Mohammad Alhuyi Nazari ◽  
Mohammad H. Ahmadi ◽  
Roghayeh Ghasempour ◽  
Mohammad Behshad Shafii

Author(s):  
Mehdi Taslimifar ◽  
Maziar Mohammadi ◽  
Ali Adibnia ◽  
Hossein Afshin ◽  
Mohammad Hassan Saidi ◽  
...  

Homogenous dispersing of nanoparticles in a base fluid is an excellent way to increase the thermal performance of heat transfer devices especially Heat Pipes (HPs). As a wickless, cheap and efficient heat pipe, Pulsating Heat Pipes (PHPs) are important candidates for thermal application considerations. In the present research an Open Loop Pulsating Heat Pipe (OLPHP) is fabricated and tested experimentally. The effects of working fluid namely, water, Silica Coated ferrofluid (SC ferrofluid), and ferrofluid without surface coating of nanoparticles (ferrofluid), charging ratio, heat input, and application of magnetic field on the overall thermal performance of the OLPHPs are investigated. Experimental results show that ferrofluid has better heat transport capability relative to SC ferrofluid. Furthermore, application of magnetic field improves the heat transfer performance of OLPHPs charged with both ferrofluids.


2015 ◽  
Vol 789-790 ◽  
pp. 422-425
Author(s):  
Fun Liang Chang ◽  
Yew Mun Hung

Micro heat pipe is a two-phase heat transfer device offering effective high heat-flux removal in electronics cooling. Essentially, micro heat pipe relies on the phase change processes, namely evaporation and condensation, and the circulation of working fluid to function as heat transfer equipment. The vast applications of micro heat pipe in portable appliances necessitate its functionality under different orientations with respect to gravity. Therefore, its thermal performance is strongly related to its orientation. By incorporating solid wall conduction, together with the continuity, momentum, and energy equations of the working fluid, a mathematical model is developed to investigate the heat and fluid flow characteristics of inclined micro heat pipes. We investigate both the favorable and adverse effects of gravity on the circulation rate which is intimately related to the thermal performance of micro heat pipes. The effects of gravity, through the angle of inclination, on the circulation strength and heat transport capacity are analysed. This study serves as a useful analytical tool in the micro heat pipe design and performance analysis, associated with different inclinations and operating conditions.


Sign in / Sign up

Export Citation Format

Share Document