Study of pressure drop-flow rate and flow resistance characteristics of heated porous materials under local thermal non-equilibrium conditions

Author(s):  
Yuxuan Liao ◽  
Xin Li ◽  
Wei Zhong ◽  
Guoliang Tao
1996 ◽  
Vol 118 (4) ◽  
pp. 489-497 ◽  
Author(s):  
Maria Siebes ◽  
Charles S. Campbell ◽  
David Z. D’Argenio

The influence of passive vasomotion on the pressure drop-flow (ΔP-Q) characteristics of a partially compliant stenosis was studied in an in vitro model of the coronary circulation. Twelve stenosis models of different severities (50 to 90 percent area reduction) and degrees of flexible wall (0 to 1/2 of the wall circumference) were inserted into thin-walled latex tubing and pressure and flow data were collected during simulated cardiac cycles. In general, the pressure drop increased with increasing fraction of flexible wall for a given flow rate and stenosis severity. The magnitude of this effect was directly dependent upon the underlying stenosis severity. The diastolic ΔP-Q relationship of severe, compliant models exhibited features of partial collapse with an increase in pressure drop at a decreasing flow rate. It is concluded that passive vasomotion of a normal wall segment at an eccentric stenosis in response to periodic changes in intraluminal pressure causes dimensional changes in the residual lumen area which can strongly affect the hemodynamic characteristics of the stenosis during the cardiac cycle. This mechanism may have important implications for the onset of plaque fracture and the prediction of the functional significance of a coronary stenosis based on quantitative angiogram analysis.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2179
Author(s):  
Jonathan Graciano-Uribe ◽  
Toni Pujol ◽  
Jaume Puig-Bargués ◽  
Miquel Duran-Ros ◽  
Gerard Arbat ◽  
...  

The small open area available at the slots of underdrains in pressurized granular bed filters for drip irrigation implies: (1) the existence of a region with non-uniform flow, and (2) local values of modified particle Reynolds number >500. These flow conditions may disagree with those accepted as valid for common pressure drop-flow rate correlations proposed for packed beds. Here, we carried out detailed computational fluid dynamics (CFD) simulations of a laboratory filter to analyze the results obtained with five different equations of head losses in porous media: (1) Ergun, (2) Darcy-Forchheimer, (3) Darcy, (4) Kozeny-Carman and (5) power function. Simulations were compared with experimental data at different superficial velocities obtained from previous studies. Results for two silica sand media indicated that all equations predicted total filter pressure drop values within the experimental uncertainty range when superficial velocities <38.3 m h−1. At higher flow rates, Ergun equation approximated the best to the observed results for silica sand media, being the expression recommended. A simple analytical model of the pressure drop along flow streamlines that matched CFD simulation results was developed.


1976 ◽  
Vol 98 (3) ◽  
pp. 563-566 ◽  
Author(s):  
W. G. Tiederman ◽  
M. M. Reischman

A calculation procedure for predicting mean velocity profiles in drag-reducing flows is presented. The procedure is based upon the eddy diffusivity model of Cess and it requires only pressure drop, flow rate and geometry information. The predictions show excellent agreement with experimentally measured profiles in both Newtonian and drag-reducing flows.


2002 ◽  
Author(s):  
Paulo R. Souza Mendes ◽  
Moˆnica F. Naccache

A constitutive relation between the pressure gradient and the seepage velocity has been developed that carries information about the liquid behavior on extension. The relation was developed in two steps. Firstly the pressure drop/flow rate relationship for an ideal pore channel was obtained. Then a capillaric model theory was applied to obtain the sought-for constitutive equation. The proposed relation was validated comparing pressure drop/flow rate results with experimental data obtained in a geometry similar to the one used in the theoretical model. Also, some comparisons with experimental data for a M1 Boger fluid flowing in a model porous medium were performed. The results showed that the proposed relation has good predictions capabilities in a representative range of pressure gradients.


Author(s):  
Carl A. Vas ◽  
Caner Ü. Yurteri ◽  
Colin J. Dickens ◽  
Krishna Prasad

SummaryRespiratory deposition from smoking articles is influenced by particle or droplet properties (such as diameter), puffing parameters (such as draw effort or pressure drop, flow rate, duration), mouth losses, and post-puff inhalation dynamics (determined by inhalation depth, volume and breath hold duration). The Smoking Behaviour System (SBS) described herein is a novel system with regard to its capability to measure flow and duration characteristics of typical smoking cycles, which may consist of puffing, mouth hold, post-puff inhalation, breath hold and exhalation. It combines two analysers: the first measures the puffing topography and optical obscuration from puffed aerosol, while the second measures the respiratory topography and optical obscuration from exhaled aerosol. The puffing and respiratory analysers were calibrated and operated between flow rates of 0-7 L.min


Sign in / Sign up

Export Citation Format

Share Document