Capillary viscous flow and melting dynamics: Coupled simulations for additive manufacturing applications

2019 ◽  
Vol 131 ◽  
pp. 1232-1246 ◽  
Author(s):  
Michael Blank ◽  
Prapanch Nair ◽  
Thorsten Pöschel
2018 ◽  
Author(s):  
Jordan T. Sutton ◽  
Kalavathy Rajan ◽  
David P. Harper ◽  
Stephen Chmely

Generating compatible and competitive materials that are environmentally sustainable and economically viable is paramount for the success of additive manufacturing using renewable materials. We report the successful application of renewable, modified lignin-containing photopolymer resins in a commercial stereolithography system. Resins were fabricated within operable ranges for viscosity and cure properties, using up to 15% modified lignin by weight with the potential for higher amounts. A four-fold increase in ductility in cured parts with higher lignin concentration is noted as compared to commercial SLA resins. Excellent print quality was seen in modified lignin resins, with good layer fusion, high surface definition, and visual clarity. These materials can be used to generate new products for additive manufacturing applications and help fill vacant material property spaces, where ductility, sustainability, and application costs are critical.


2018 ◽  
Author(s):  
Jordan T. Sutton ◽  
Kalavathy Rajan ◽  
David P. Harper ◽  
Stephen Chmely

Generating compatible and competitive materials that are environmentally sustainable and economically viable is paramount for the success of additive manufacturing using renewable materials. We report the successful application of renewable, modified lignin-containing photopolymer resins in a commercial stereolithography system. Resins were fabricated within operable ranges for viscosity and cure properties, using up to 15% modified lignin by weight with the potential for higher amounts. A four-fold increase in ductility in cured parts with higher lignin concentration is noted as compared to commercial SLA resins. Excellent print quality was seen in modified lignin resins, with good layer fusion, high surface definition, and visual clarity. These materials can be used to generate new products for additive manufacturing applications and help fill vacant material property spaces, where ductility, sustainability, and application costs are critical.


Author(s):  
Arivazhagan Pugalendhi ◽  
Rajesh Ranganathan

Additive Manufacturing (AM) capabilities in terms of product customization, manufacture of complex shape, minimal time, and low volume production those are very well suited for medical implants and biological models. AM technology permits the fabrication of physical object based on the 3D CAD model through layer by layer manufacturing method. AM use Magnetic Resonance Image (MRI), Computed Tomography (CT), and 3D scanning images and these data are converted into surface tessellation language (STL) file for fabrication. The applications of AM in ophthalmology includes diagnosis and treatment planning, customized prosthesis, implants, surgical practice/simulation, pre-operative surgical planning, fabrication of assistive tools, surgical tools, and instruments. In this article, development of AM technology in ophthalmology and its potential applications is reviewed. The aim of this study is nurturing an awareness of the engineers and ophthalmologists to enhance the ophthalmic devices and instruments. Here some of the 3D printed case examples of functional prototype and concept prototypes are carried out to understand the capabilities of this technology. This research paper explores the possibility of AM technology that can be successfully executed in the ophthalmology field for developing innovative products. This novel technique is used toward improving the quality of treatment and surgical skills by customization and pre-operative treatment planning which are more promising factors.


2020 ◽  
Vol 24 (09) ◽  

For the month of September 2020, APBN dives into the world of 3D printing and its wide range of real-world applications. Keeping our focus on the topic of the year, the COVID-19 pandemic, we explore the environmental impact of the global outbreak as well as gain insight to the top 5 vaccine platforms used in vaccine development. Discover more about technological advancements and how it is assisting innovation in geriatric health screening.


2019 ◽  
pp. 235-258
Author(s):  
Manu Srivastava ◽  
Sandeep Rathee ◽  
Sachin Maheshwari ◽  
T. K. Kundra

2021 ◽  
pp. 019-029
Author(s):  
Lahoud Marcel ◽  
Melendez Leonardo ◽  
Gil Arturo

The additive manufacture is a fabrication process that has taken huge steps in the last decade, even though the first researches and prototypes are around since almost forty years ago. In this article, a design method for a Parallel Kinematics Robot for Additive Manufacturing Applications is proposed. A numerical model is obtained from the kinematics of the robot for which the design, construction and assembly are planned using recycled materials and equipment. The control of the robot is done using open source software, allowing the planning of trajectories in the Cartesian space on a maximum designed cylindrical workspace of 300mm in diameter by 300mm high. At the end of the work the robot was identified, the kinematic model was validated and considerations for future works were given.


Sign in / Sign up

Export Citation Format

Share Document