Gallium-based liquid metal alloy incorporating oxide-free copper nanoparticle clusters for high-performance thermal interface materials

Author(s):  
Seokkan Ki ◽  
Jaehwan Shim ◽  
Seungtae Oh ◽  
Eunjoo Koh ◽  
Donghyun Seo ◽  
...  
2020 ◽  
Vol 32 (9) ◽  
pp. 092001
Author(s):  
Sen Chen ◽  
Zhongshan Deng ◽  
Jing Liu

2012 ◽  
Vol 134 (2) ◽  
Author(s):  
Joseph R. Wasniewski ◽  
David H. Altman ◽  
Stephen L. Hodson ◽  
Timothy S. Fisher ◽  
Anuradha Bulusu ◽  
...  

The next generation of thermal interface materials (TIMs) are currently being developed to meet the increasing demands of high-powered semiconductor devices. In particular, a variety of nanostructured materials, such as carbon nanotubes (CNTs), are interesting due to their ability to provide low resistance heat transport from device-to-spreader and compliance between materials with dissimilar coefficients of thermal expansion (CTEs), but few application-ready configurations have been produced and tested. Recently, we have undertaken major efforts to develop functional nanothermal interface materials (nTIMs) based on short, vertically aligned CNTs grown on both sides of a thin interposer foil and interfaced with substrate materials via metallic bonding. A high-precision 1D steady-state test facility has been utilized to measure the performance of nTIM samples, and more importantly, to correlate performance to the controllable parameters. In this paper, we describe our material structures and the myriad permutations of parameters that have been investigated in their design. We report these nTIM thermal performance results, which include a best to-date thermal interface resistance measurement of 3.5 mm2 K/W, independent of applied pressure. This value is significantly better than a variety of commercially available, high-performance thermal pads and greases we tested, and compares favorably with the best results reported for CNT-based materials in an application-representative setting.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1201 ◽  
Author(s):  
Le Lv ◽  
Wen Dai ◽  
Aijun Li ◽  
Cheng-Te Lin

With the increasing power density of electrical and electronic devices, there has been an urgent demand for the development of thermal interface materials (TIMs) with high through-plane thermal conductivity for handling the issue of thermal management. Graphene exhibited significant potential for the development of TIMs, due to its ultra-high intrinsic thermal conductivity. In this perspective, we introduce three state-of-the-art graphene-based TIMs, including dispersed graphene/polymers, graphene framework/polymers and inorganic graphene-based monoliths. The advantages and limitations of them were discussed from an application point of view. In addition, possible strategies and future research directions in the development of high-performance graphene-based TIMs are also discussed.


2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Andrew N. Smith ◽  
Nicholas R. Jankowski ◽  
Lauren M. Boteler

Thermal interface materials (TIMs) have reached values approaching the measurement uncertainty of standard ASTM D5470 based testers of approximately ±1 × 10−6 m2 K/W. This paper presents a miniature ASTM-type steady-state tester that was developed to address the resolution limits of standard testers by reducing the heat meter bar thickness and using infrared (IR) thermography to measure the temperature gradient along the heat meter bar. Thermal interfacial resistance measurements on the order of 1 × 10−6 m2 K/W with an order of magnitude improvement in the uncertainty of ±1 × 10−7 m2 K/W are demonstrated. These measurements were made on several TIMs with a thermal resistance as low as 1.14 × 10−6 m2 K/W.


Sign in / Sign up

Export Citation Format

Share Document