Modelling of two phase solid-liquid flow in horizontal pipe using computational fluid dynamics technique

2017 ◽  
Vol 42 (31) ◽  
pp. 20133-20137 ◽  
Author(s):  
Jatinder Pal Singh ◽  
Satish Kumar ◽  
S.K. Mohapatra
2017 ◽  
Vol 30 (1&2) ◽  
pp. 1-16 ◽  
Author(s):  
N. Z. Aung ◽  
T. Yuwono

Having a clear understanding on the phase distribution of gas-liquid two-phase flow through elbow bends is vital in mixing and separation system designs. This paper presents the computational fluid dynamics (CFD) simulations and experimental observations of gas-liquid two-phase flow pattern characteristic through a vertical to horizontal right angled (90°) elbow. Experimental observations were conducted in a transparent test section that consisted of a vertical pipe, elbow bend and horizontal pipe with an inside diameter of 0.036 m. The CFD simulations were performed by using a computer software package, FLUENT 6.2. Bubbly flow conditions were created in the vertical test section with the variation of superficial liquid Reynolds number from 13 497 to 49 488 and volumetric gas quality from 0.05 to 0.2. The CFD results showed a good agreement with experimental results in the following observations. The results showed that gas-liquid flow pattern inside and downstream of the elbow bend mainly depended on liquid velocity and it is also influenced by gas quality at high liquid velocities. At lower liquid velocities, gas-liquid separation began early in the elbow bend and gas-phase migrated to outer bend. Then, it smoothly transformed to stratified flow at elbow outlet. When the liquid velocity was further increased, the liquid phase occupied the outer bend rubbing the gas phase to the inner bend and delayed the formation of gas layer in the horizontal pipe. The increase of gas quality in higher liquid velocities promoted gas core formation at the elbow exit and caused wavy gas layers at the downstream of the elbow.


Author(s):  
Shofique Uddin Ahmed ◽  
Rajesh Arora ◽  
Om Parkash

Over the decades conveying solid particles through pipelines is a prevalent usage for many industries like food industries, pharmaceutical, oil and gas-solid handling, power generations etc. In the present study, slurry flow through 54.9 mm diameter and 4 m long horizontal pipe with solid particle diameter 0.125 mm and specific gravity 2.47 has been numerically analysed using a granular version of Eulerian two-phase model and RNG K-  model. The solid particles are considered as mono-dispersed in the Eulerian model. These models are available in computational fluid dynamics (CFD) fluent software package. Non-uniform structured three-dimensional mesh with a refinement near wall boundary region has been selected for discretising the flow domain, and governing equations are solved using control volume finite difference method. Simulations are conducted at velocity varying from 1 m/s to 5 m/s and efflux concentration varying from 0.1 to 0.5 by volume. Different slurry flow parameters such as solid concentration distribution, velocity distribution, pressure drop etc. have been analysed from the simulated results. The simulated results of pressure drop are correlated with the experimental data available in previous literature and are found to be in excellent compliance with the experimental data.


2020 ◽  
Vol 12 (7) ◽  
pp. 168781402093795
Author(s):  
Yi Li ◽  
Xiaodong Zeng ◽  
Wenshuai Lv ◽  
Zhaohui He

In the conveying process of a solid–liquid two-phase medium, the wear of the flow passage components is unavoidable. In this study, the solid–liquid two-phase flow in a centrifugal pump was numerically simulated by computational fluid dynamics–discrete element method coupling. For particle diameters up to 3 mm, the particle–particle and particle–wall interactions were considered in the simulation. Two-phase performance and wear experiments for different flow rates and particle concentrations were conducted. The wear experiment was carried out for 48 h at each mass concentration. In these experiments, a paint film method was used to display the wear position, and the wall thickness of the flow passage was measured using an ultrasonic thickness gauge. The results show that the instantaneous wear rate of the impeller, volute, and wear plate in the pump changed periodically with the impeller rotation. The volute wall wear was related to the particle movement. With the increase in the particle mass concentration, the wear rate increased. However, the rate of increase of the wear rate decreased because the particles moved to the wall in the volute to form a particle layer. Increasing the concentration did not linearly increase the effect of the particles on the wall.


Author(s):  
Zainab Yousif Shnain ◽  
Jamal M. Ali ◽  
Khalid A. Sukkar ◽  
May Ali Alsaffar ◽  
Mohammad F. Abid

2008 ◽  
Vol 1097 ◽  
Author(s):  
Helen Jane Griffiths ◽  
John G Harvey ◽  
James Dean ◽  
James A Curran ◽  
Athina E Markaki ◽  
...  

AbstractCell-implant adhesive strength is important for prostheses. In this paper, an investigation is described into the adhesion of bovine chondrocytes to Ti6Al4V-based substrates with different surface roughnesses and compositions. Cells were cultured for 2 or 5 days, to promote adhesion. The ease of cell removal was characterised, using both biochemical (trypsin) and mechanical (accelerated buoyancy and liquid flow) methods. Computational fluid dynamics (CFD) modelling has been used to estimate the shear forces applied to the cells by the liquid flow. A comparison is presented between the ease of cell detachment indicated using these methods, for the three surfaces investigated.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2399 ◽  
Author(s):  
Fengbo Yang ◽  
Xinyu Xue ◽  
Chen Cai ◽  
Zhu Sun ◽  
Qingqing Zhou

In recent years, multirotor unmanned aerial vehicles (UAVs) have become more and more important in the field of plant protection in China. Multirotor unmanned plant protection UAVs have been widely used in vast plains, hills, mountains, and other regions, and become an integral part of China’s agricultural mechanization and modernization. The easy takeoff and landing performances of UAVs are urgently required for timely and effective spraying, especially in dispersed plots and hilly mountains. However, the unclearness of wind field distribution leads to more serious droplet drift problems. The drift and distribution of droplets, which depend on airflow distribution characteristics of UAVs and the droplet size of the nozzle, are directly related to the control effect of pesticide and crop growth in different growth periods. This paper proposes an approach to research the influence of the downwash and windward airflow on the motion distribution of droplet group for the SLK-5 six-rotor plant protection UAV. At first, based on the Navier-Stokes (N-S) equation and SST k–ε turbulence model, the three-dimensional wind field numerical model is established for a six-rotor plant protection UAV under 3 kg load condition. Droplet discrete phase is added to N-S equation, the momentum and energy equations are also corrected for continuous phase to establish a two-phase flow model, and a three-dimensional two-phase flow model is finally established for the six-rotor plant protection UAV. By comparing with the experiment, this paper verifies the feasibility and accuracy of a computational fluid dynamics (CFD) method in the calculation of wind field and spraying two-phase flow field. Analyses are carried out through the combination of computational fluid dynamics and radial basis neural network, and this paper, finally, discusses the influence of windward airflow and droplet size on the movement of droplet groups.


Sign in / Sign up

Export Citation Format

Share Document