Enhanced low-temperature activity for CO2 methanation over Ru doped the Ni/CexZr(1−)O2 catalysts prepared by one-pot hydrolysis method

2018 ◽  
Vol 43 (14) ◽  
pp. 7179-7189 ◽  
Author(s):  
Xingfu Shang ◽  
Digu Deng ◽  
Xueguang Wang ◽  
Weidong Xuan ◽  
Xiujing Zou ◽  
...  
Catalysts ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 32 ◽  
Author(s):  
Vissanu Meeyoo ◽  
Noppadol Panchan ◽  
Nat Phongprueksathat ◽  
Atsadang Traitangwong ◽  
Xinpeng Guo ◽  
...  

Ni-Ce-Zr-Oδ catalysts were prepared via one-pot hydrothermal synthesis. It was found that Ni can be partially incorporated into the Ce-Zr lattice, increasing surface oxygen species. The catalysts possess high surface areas even at high Ni loadings. The catalyst with Ni content of 71.5 wt.% is able to activate CO2 methanation even at a low temperature (200 °C). Its CO2 conversion and methane selectivity were reported at 80% and 100%, respectively. The catalyst was stable for 48 h during the course of CO2 methanation at 300 °C. Catalysts with the addition of medium basic sites were found to have better catalytic activity for CO2 methanation.


2020 ◽  
Vol 37 (12) ◽  
pp. 2317-2325
Author(s):  
Seong Bin Jo ◽  
Ho Jin Chae ◽  
Tae Young Kim ◽  
Jeom-In Baek ◽  
Dhanusuraman Ragupathy ◽  
...  

Author(s):  
Gabriella Garbarino ◽  
Paweł Kowalik ◽  
Paola Riani ◽  
Katarzyna Antoniak-Jurak ◽  
Piotr Pieta ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 28
Author(s):  
Anastasios I. Tsiotsias ◽  
Nikolaos D. Charisiou ◽  
Ioannis V. Yentekakis ◽  
Maria A. Goula

CO2 methanation has recently emerged as a process that targets the reduction in anthropogenic CO2 emissions, via the conversion of CO2 captured from point and mobile sources, as well as H2 produced from renewables into CH4. Ni, among the early transition metals, as well as Ru and Rh, among the noble metals, have been known to be among the most active methanation catalysts, with Ni being favoured due to its low cost and high natural abundance. However, insufficient low-temperature activity, low dispersion and reducibility, as well as nanoparticle sintering are some of the main drawbacks when using Ni-based catalysts. Such problems can be partly overcome via the introduction of a second transition metal (e.g., Fe, Co) or a noble metal (e.g., Ru, Rh, Pt, Pd and Re) in Ni-based catalysts. Through Ni-M alloy formation, or the intricate synergy between two adjacent metallic phases, new high-performing and low-cost methanation catalysts can be obtained. This review summarizes and critically discusses recent progress made in the field of bimetallic Ni-M (M = Fe, Co, Cu, Ru, Rh, Pt, Pd, Re)-based catalyst development for the CO2 methanation reaction.


2019 ◽  
Vol 9 (20) ◽  
pp. 5636-5650 ◽  
Author(s):  
Xinpeng Guo ◽  
Hongyan He ◽  
Atsadang Traitangwong ◽  
Maoming Gong ◽  
Vissanu Meeyoo ◽  
...  

Proposed reaction mechanism for CO2 methanation on NiAl-MO/CeO2-x catalysts.


2018 ◽  
Vol 765 ◽  
pp. 551-559 ◽  
Author(s):  
Yanjie Wang ◽  
Ayyakannu Sundaram Ganeshraja ◽  
Changzi Jin ◽  
Kaixin Zhu ◽  
Junhu Wang

2012 ◽  
Vol 12 (9) ◽  
pp. 7280-7283
Author(s):  
Renchun Yang ◽  
Dingxing Tang ◽  
Fengyun Ma ◽  
Ting Xian Tao ◽  
Yiming Ren ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document