Effect of variation of inlet boundary conditions on the combustion flow-field of a typical double cavity scramjet combustor

2018 ◽  
Vol 43 (16) ◽  
pp. 8139-8151 ◽  
Author(s):  
Gautam Choubey ◽  
K.M. Pandey
2011 ◽  
Vol 56 (35) ◽  
pp. 3871-3877 ◽  
Author(s):  
Wei Huang ◽  
ZhenGuo Wang ◽  
ShiBin Luo ◽  
Jun Liu

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Namrata Bordoloi ◽  
Krishna Murari Pandey ◽  
Kaushal Kumar Sharma

The air-breathing engines, commonly known as Supersonic Combustor Ramjet (SCRAMJET) engines, are one of the most prominent technologies among researchers due to their high thrust-to-weight ratio. The researchers are constantly making efforts for improved performance of the combustor under the required boundary conditions. The present working computational model studies a hydrogen-fueled parallel cavity scramjet combustor to recognize the complex flow field characteristics and performance of the combustor in Ansys 15.0. The computational model developed is a replica of an experiment conducted in China which slightly modified the boundary conditions. The standard two-equation K- ε turbulence model and Reynolds averaged Navier Stokes (RANS) equation with finite-rate/eddy dissipation species reaction model are used to simulate the problem. The validation of the present model is achieved by comparing the results with already available experimental data in conformity with the literature. The results of the simulations are in satisfactory accord with the experimental data and images. Furthermore, to achieve the stated objective, different incoming Mach numbers, namely, 2.25, 2.52, and 2.75, are considered for a more clear understanding of variables that affects the characteristics of the flow field. The temperature, Mach number, density pressure, and H2O mass fraction contours were studied to facilitate proper understanding. The maximum temperature rise observed is 2711.467 K for M = 2.25. Additionally, the performance parameters, namely, combustion and mixing efficiencies, are also studied. The maximum combustion and mixing efficiencies are 87.47% and 98.15% for M = 2.25 and 2.75, respectively.


Author(s):  
Domenica Mirauda ◽  
Antonio Volpe Plantamura ◽  
Stefano Malavasi

This work analyzes the effects of the interaction between an oscillating sphere and free surface flows through the reconstruction of the flow field around the body and the analysis of the displacements. The experiments were performed in an open water channel, where the sphere had three different boundary conditions in respect to the flow, defined as h* (the ratio between the distance of the sphere upper surface from the free surface and the sphere diameter). A quasi-symmetric condition at h* = 2, with the sphere equally distant from the free surface and the channel bottom, and two conditions of asymmetric bounded flow, one with the sphere located at a distance of 0.003m from the bottom at h* = 3.97 and the other with the sphere close to the free surface at h* = 0, were considered. The sphere was free to move in two directions, streamwise (x) and transverse to the flow (y), and was characterized by values of mass ratio, m* = 1.34 (ratio between the system mass and the displaced fluid mass), and damping ratio, ζ = 0.004. The comparison between the results of the analyzed boundary conditions has shown the strong influence of the free surface on the evolution of the vortex structures downstream the obstacle.


Author(s):  
Vekamulla Narayana

In the present study, an attempt is made to explore the flow field inside the differentially heated lid-driven square cavity. The governing equations along with boundary conditions are solved numerically. The simulated results (100 ≤ Re ≤ 1000 and 0.001 ≤ Ri ≤ 10) are validated with previous results in the literature. The convection differencing schemes, namely, UPWIND, QUICK, SUPERBEE, and SFCD, are discussed and are used to simulate the flow using the MPI code. It is observed that the computational cost for all the differencing schemes get reduced tremendously when the MPI code is implemented. Plots demonstrate the influences of Re and Ri in terms of the contours of the fluid streamlines, isotherms, energy streamlines, and field synergy principle.


Author(s):  
X. Li ◽  
J. L. Gaddis ◽  
T. Wang

The flow field of a 2-D laminar confined impinging slot jet is investigated. Numerical results indicate that there exist two different solutions in some range of geometric and flow parameters. The two steady flow patterns are obtained under identical boundary conditions but only with different initial flow fields. Three different exit boundary conditions are investigated to eliminate artificial effects. The different flow patterns are observed to significantly affect the heat transfer. A flow visualization experiment is carried out to verify the computational results and both flow patterns are observed. The bifurcation mechanism is interpreted and discussed.


Author(s):  
Steffen Melzer ◽  
Tim Müller ◽  
Stephan Schepeler ◽  
Tobias Kalkkuhl ◽  
Romuald Skoda

In contrast to conventional multiblade centrifugal pumps, single-blade pumps are characterized by a significant fluctuation of head and highly transient and circumferentially nonuniform flow field even in the best-efficiency point. For a contribution to a better understanding of the flow field and an improvement of numerical methods, a combined experimental and numerical study is performed with special emphasis on the analysis of the transient pressure field. In an open test rig, piezoresistive pressure sensors are utilized for the measurement of transient in- and outflow conditions and the volute casing wall pressure fluctuations. The quality of the numerical simulations is ensured by a careful adoption of the real geometry details in the simulation model, a grid study and a time step study. While the power curve is well reproduced by the numerical simulations, the time-averaged head is systematically overpredicted, probably due to underestimation of losses. Transient pressure boundary conditions for the numerical simulation show a better prediction of the measured pressure amplitude than constant boundary conditions, whereas the time-averaged head prediction is not improved. For a more accurate prediction of the transient flow field and the time-averaged characteristics, the utilization of scale-resolving turbulence models is assumed to be indispensable.


Author(s):  
Alessio Firrito ◽  
Yannick Bousquet ◽  
Nicolas Binder ◽  
Ludovic Pintat

Abstract In recent years, lot of turbine research is focused on the study and optimization of inter-turbine ducts, an aero-engine component for which the design is becoming more challenging due to the turbofan architecture evolution. Starting from the early design phase, the knowledge of the component performance and outlet flow pattern is crucial in the design of the low pressure turbine. To improve prediction, multi-row unsteady simulations are deployed. Unfortunately, some questions arise in the use of these simulations, among others the knowledge of the turbulent boundary conditions and the contribution of the unsteady simulations to the flow solution. In this paper steady and time resolved RANS simulations of a turning inter-turbine duct are investigated. Particularly, two questions are addressed. The first one is the influence of the turbulent quantities boundary conditions in the case of a k–ω Wilcox turbulence model in the flow field solution. The second one is the contribution of the unsteadiness to the mean flow prediction. It will be shown that the mean flow depends on inlet turbulence only if the turbulence length scale is relatively high; otherwise the flow field is almost turbulence-invariant. For the unsteady simulations, unsteadiness modifies the mean flow solution only with low inlet turbulence.


Sign in / Sign up

Export Citation Format

Share Document