The characteristics of syngas production from bio-oil dry reforming utilizing the waste heat of granulated blast furnace slag

2018 ◽  
Vol 43 (49) ◽  
pp. 22108-22115 ◽  
Author(s):  
Xin Yao ◽  
Qingbo Yu ◽  
Guowei Xu ◽  
Zhengri Han ◽  
Huaqing Xie ◽  
...  
Energy ◽  
2020 ◽  
Vol 200 ◽  
pp. 117481 ◽  
Author(s):  
Huaqing Xie ◽  
Rongquan Li ◽  
Zhenyu Yu ◽  
Zhengyu Wang ◽  
Qingbo Yu ◽  
...  

2017 ◽  
Vol 9 (5) ◽  
pp. 053101 ◽  
Author(s):  
Xin Yao ◽  
Qingbo Yu ◽  
Huaqing Xie ◽  
Wenjun Duan ◽  
Zhengri Han ◽  
...  

2011 ◽  
Vol 347-353 ◽  
pp. 2604-2607 ◽  
Author(s):  
Si Yi Luo ◽  
Chao Li ◽  
Chui Jie Yi ◽  
Yang Min Zhou

In this paper, a novel biomass pyrolysis and liquefaction system using blast furnace as heating source was presented. The system is composed of three parts: blast furnace slag granulation, biomass pyrolysis centrifuge reactor, and the waste heat of blast furnace as the heat source. As the cost of biomass pyrolysis was greatly reduced, this system has a promising application prospect.


2017 ◽  
Vol 68 (6) ◽  
pp. 1182-1187
Author(s):  
Ilenuta Severin ◽  
Maria Vlad

This article presents the influence of the properties of the materials in the geopolymeric mixture, ground granulated blast furnace slag (GGBFS) + wheat straw ash (WSA) + uncalcined red mud (RMu), and ground granulated blast furnace slag + wheat straw ash + calcined red mud (RMc), over the microstructure and mechanical properties of the synthesised geopolymers. The activation solutions used were a NaOH solution with 8M concentration, and a solution realised from 50%wt NaOH and 50%wt Na2SiO3. The samples were analysed: from the microstructural point of view through SEM microscopy; the chemical composition was determined through EDX analysis; and the compressive strength tests was done for samples tested at 7 and 28 days, respectively. The SEM micrographies of the geopolymers have highlighted a complex structure and an variable compressive strength. Compressive strength varied from 24 MPa in the case of the same recipe obtained from 70% of GGBFS + 25% WSA +5% RMu, alkaline activated with NaOH 8M (7 days testing) to 85 MPa in the case of the recipe but replacing RMu with RMc with calcined red mud, alkaline activated with the 50%wt NaOH and 50%wt Na2SiO3 solution (28 days testing). This variation in the sense of the rise in compressive strength can be attributed to the difference in reactivity of the materials used in the recipes, the curing period, the geopolymers structure, and the presence of a lower or higher rate of pores, as well as the alkalinity and the nature of the activation solutions used.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 382 ◽  
Author(s):  
Danying Gao ◽  
Zhenqing Zhang ◽  
Yang Meng ◽  
Jiyu Tang ◽  
Lin Yang

This work aims to investigate the effect of additional flue gas desulfurization gypsum (FGDG) on the properties of calcium sulfoaluminate cement (CSAC) blended with ground granulated blast furnace slag (GGBFS). The hydration rate, setting time, mechanical strength, pore structure and hydration products of the CSAC-GGBFS mixture containing FGDG were investigated systematically. The results show that the addition of FGDG promotes the hydration of the CSAC-GGBFS mixture and improves its mechanical strength; however, the FGDG content should not exceed 6%.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 596
Author(s):  
Yasuhiro Dosho

To improve the application of low-quality aggregates in structural concrete, this study investigated the effect of multi-purpose mineral admixtures, such as fly ash and ground granulated blast-furnace slag, on the performance of concrete. Accordingly, the primary performance of low-quality recycled aggregate concrete could be improved by varying the replacement ratio of the recycled aggregate and using appropriate mineral admixtures such as fly ash and ground granulated blast-furnace slag. The results show the potential for the use of low-quality aggregate in structural concrete.


Sign in / Sign up

Export Citation Format

Share Document