The Influence of the Properties of the Material Used for Obtaining Geopolymers on Their Structure and Compressive Strength

2017 ◽  
Vol 68 (6) ◽  
pp. 1182-1187
Author(s):  
Ilenuta Severin ◽  
Maria Vlad

This article presents the influence of the properties of the materials in the geopolymeric mixture, ground granulated blast furnace slag (GGBFS) + wheat straw ash (WSA) + uncalcined red mud (RMu), and ground granulated blast furnace slag + wheat straw ash + calcined red mud (RMc), over the microstructure and mechanical properties of the synthesised geopolymers. The activation solutions used were a NaOH solution with 8M concentration, and a solution realised from 50%wt NaOH and 50%wt Na2SiO3. The samples were analysed: from the microstructural point of view through SEM microscopy; the chemical composition was determined through EDX analysis; and the compressive strength tests was done for samples tested at 7 and 28 days, respectively. The SEM micrographies of the geopolymers have highlighted a complex structure and an variable compressive strength. Compressive strength varied from 24 MPa in the case of the same recipe obtained from 70% of GGBFS + 25% WSA +5% RMu, alkaline activated with NaOH 8M (7 days testing) to 85 MPa in the case of the recipe but replacing RMu with RMc with calcined red mud, alkaline activated with the 50%wt NaOH and 50%wt Na2SiO3 solution (28 days testing). This variation in the sense of the rise in compressive strength can be attributed to the difference in reactivity of the materials used in the recipes, the curing period, the geopolymers structure, and the presence of a lower or higher rate of pores, as well as the alkalinity and the nature of the activation solutions used.

2017 ◽  
Vol 1143 ◽  
pp. 114-119
Author(s):  
Ilenuta Severin ◽  
Maria Vlad

Ground granulated blast furnace slag, red mud, wheat straw ash are secondary material which after alkaline activation can be used in the construction materials’ domain. Their disposal poses a threat to the environment, whereas by reusing them we would be able to reduce this negative impact. This paper describes the research carried out in order to synthesise some geopolymer recipes, which are based on ground granulated blast furnace slag, red mud and wheat straw ash, alkaline activated with sodium hydroxide or a solution made with sodium hydroxide and sodium silicate. Factors that influence the compression strength have been studied such as: the nature of the alkaline activator, the chemical composition of solid materials in the recipes and the curing time. The geopolymer samples have been dried at room temperature for 7 and 28 days, respectively, and after the compressive strength tests has been made. Following this research it has been found out that NaOH/Na2SiO3 activated geopolymer samples have shown a higher resistance in the compressive strength. From the SEM analysis it has been found out that the samples with a higher amount of ground granulated blast furnace slag in their composition had a more homogeneous and less porous design than those with a smaller amount of ground granulated blast furnace slag.


2021 ◽  
Vol 11 (9) ◽  
pp. 4110
Author(s):  
Javad Sabzi ◽  
Elyas Asadi Shamsabadi ◽  
Mansour Ghalehnovi ◽  
S. Ali Hadigheh ◽  
Ali Khodabakhshian ◽  
...  

This research studies the properties of mortars incorporating waste materials including red mud (RM), ground granulated blast furnace slag (GGBFS), and electric arc furnace dust (EAFD). Ordinary Portland cement (OPC) was partially replaced with equal contents of RM, GGBFS, and EAFD at different ratios by weight (0, 5, 10, 15, 20, 30, 40, and 50%). Slump, compressive strength, splitting tensile strength, electrical resistivity, water absorption, resistance to freeze–thaw cycles, and durability under sodium sulphate and sulphuric acid attacks were investigated. Moreover, the microstructure of mortars cured in tap water and exposed to sulphuric acid was examined using scanning electron microscopy (SEM) and energy dispersive X-ray spectrometer (EDX). Cement replacement up to 20% led to a slight increase in compressive strength at 7, 28, and 120 days, while the results of durability tests showed that only up to 10% cement substitution could improve the durability of the mortar. A microstructural analysis showed that small waste grain portions in the matrix improved the whole mix density and the interfacial transition zone (ITZ) between aggregates and paste. The results of this study showed that there is an optimum replacement ratio of about 10%, beyond which the incorporation of these waste powders can cause degradation of concrete properties.


2021 ◽  
Vol 13 (20) ◽  
pp. 11298
Author(s):  
Alessio Occhicone ◽  
Mira Vukčević ◽  
Ivana Bosković ◽  
Claudio Ferone

The aluminum Bayer production process is widespread all over the world. One of the waste products of the Bayer process is a basic aluminosilicate bauxite residue called red mud. The aluminosilicate nature of red mud makes it suitable as a precursor for alkali-activated materials. In this work, red mud was mixed with different percentages of blast furnace slag and then activated by sodium silicate solution at different SiO2/Na2O ratios. Obtained samples were characterized by chemical–physical analyses and compressive strength determination. Very high values of compressive strength, up to 50 MPa, even for high percentage of red mud in the raw mixture (70 wt.% of RM in powder mixture), were obtained. In particular, the higher compressive strength was measured for cubic samples containing 50 wt.% of RM, which showed a value above 70 MPa. The obtained mixtures were characterized by no or scarce environmental impact and could be used in the construction industry as an alternative to cementitious and ceramic materials.


This paper aims to investigate the influence of alkaline activators solution i.e, Na2SiO3 / NaOH on compressive strength of geopolymer concrete mixed with Ground Granulated Blast furnace slag (GGBS) for constant molarity 8 M. The ratio of alkali to binder ratio is taken as 0.5 and the ratio of Na2SiO3 / NaOH is 2.5. The geopolymer mix is based on pervious sutdies. As per Indian standard size moulds for the cube, cylinder and prism are cast, cured and tested.The specimens were tested for fresh concrete properties such as slump cone test and hardened properties such as compressive strength for cubes, split tensile strength for cylinders and flexural strength for prism different days of curing under ambient temperature. Also, a microstructural study is done by using Scanning electron microscopy (SEM), Energy dispersive X-ray (EDX) for the tested sample. It is found from the test results that, with the aid of alumino-silicate solution, early strength is achieved by geopolymer concrete within 7 days under ambient condition due to the presence of ground granulated slag.


2015 ◽  
Vol 16 (SE) ◽  
pp. 509-517
Author(s):  
Fatemeh Sayyahi ◽  
Hamid Shirzadi

 In this study, the properties of concrete with different amounts of Ground Granulated Blast-Furnace Slag (GGBFS) has been studied. In another part, the test deals to assess the properties of concrete containing GGBFS with micro-SiO2. The results show that the slag has pozzolan properties and its use up to 20% in the concrete, has no harmful effect on concrete properties. The simultaneous use of micro-SiO2 with blast furnace slag have little effect, as well as micro-SiO2 covers the defects caused by the use of slag. The results indicate that the use of micro-SiO2 and slag has good effects on the strength of concrete up to a certain age, so that its compressive strength is increased. Water-cement ratio was 0.42 and 12.5 mm for maximum size of aggregate and cement content in concrete was 425 kg per cubic meter. Compressive strength of concrete samples was measured at ages 7, 28, 56 and 90-day and flexural and tensile strength and water absorption after 28-day and 90 days also was measured.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3448
Author(s):  
Chenhui Jiang ◽  
Aiying Wang ◽  
Xufan Bao ◽  
Zefeng Chen ◽  
Tongyuan Ni ◽  
...  

This paper presents an experimental investigation on geopolymer coatings (GPC) in terms of surface protection of civil structures. The GPC mixtures were prepared with a quadruple precursor simultaneously containing fly ash (FA), ground granulated blast-furnace slag (GBFS), metakaolin (MK), and Portland cement (OPC). Setting time, compressive along with adhesive strength and permeability, were tested and interpreted from a perspective of potential applications. The preferred GPC with favorable setting time (not shorter than 120 min) and desirable compressive strength (not lower than 35 MPa) was selected from 85 mixture formulations. The results indicate that balancing strength and setting behavior is viable with the aid of the multi-componential precursor and the mixture design based on total molar ratios of key oxides or chemical elements. Adhesive strength of the optimized GPC mixtures was ranged from 1.5 to 3.4 MPa. The induced charge passed based on a rapid test of coated concrete specimens with the preferred GPC was 30% lower than that of the uncoated ones. Setting time of GPC was positively correlated with η[Si/(Na+Al)]. An abrupt increase of setting time occurred when the molar ratio was greater than 1.1. Compressive strength of GPC was positively affected by mass contents of ground granulated blast furnace slag, metakaolin and ordinary Portland cement, and was negatively affected by mass content of fly ash, respectively. Sustained seawater immersion impaired the strength of GPC to a negligible extent. Overall, GPC potentially serves a double purpose of satisfying the usage requirements and achieving a cleaner future.


Sign in / Sign up

Export Citation Format

Share Document