Prediction of residual burst strength for composite pressure vessels after low velocity impact

2020 ◽  
Vol 45 (18) ◽  
pp. 10962-10976
Author(s):  
Binbin Liao ◽  
Yang Du ◽  
Jinyang Zheng ◽  
Dongliang Wang ◽  
Yuan Lin ◽  
...  
2018 ◽  
Vol 18 (4) ◽  
pp. 1715-1728 ◽  
Author(s):  
Shokrollah Sharifi ◽  
Soheil Gohari ◽  
Masoumeh Sharifiteshnizi ◽  
Reza Alebrahim ◽  
Colin Burvill ◽  
...  

2021 ◽  
pp. 002199832110370
Author(s):  
Harun Sepetcioglu ◽  
Necmettin Tarakcioglu

In this study, the fatigue behavior of 0.25 wt.% graphene nanoplatelets (GnPs) reinforced and unreinforced impact damaged basalt/epoxy composite pressure vessels (CPVs) was investigated. The CPVs were subjected to low-velocity impact (LVI) of 2.5 J, 5 J, 7.5 J, 10 J, 15 J, 20 J, and 25 J under internal pressure of 50 bar (hoop/axial prestresses: 98/49 MPa). Then, to detect fatigue life changes, fatigue tests were performed at load rates of 30% of ultimate hoop stress (σHS), where sweat damage occurred in the basalt/epoxy CPVs under alternating internal pressure. Considering the remaining fatigue life and formation of the damages in the CPVs for all impact energies, to investigate the fatigue behavior and GnPs effects of CPVs subjected to low-velocity impact, an impact value of 5 J was preferred. The 5 J impact damaged CPVs were subjected to fatigue cyclic following ASTM D 2992 at load rates of 20%, 25%, 30%, 35%, and 40% of the σHS. The fatigue life of damaged CPVs was compared by that of undamaged over S-N curves. As the impact energy increased, the impact damage area increased. The increased size of damage reduced the fatigue life of basalt/epoxy CPVs. At the fatigue load rates mentioned above, the GnPs improved the fatigue life of damaged basalt/epoxy CPVs by about 3.5, 3.2, 11.3, 2.4, and 5 times, respectively.


2018 ◽  
Vol 52 (29) ◽  
pp. 4051-4060 ◽  
Author(s):  
Trevor Allen ◽  
Sharif Ahmed ◽  
Warren Hepples ◽  
Philippa A Reed ◽  
Ian Sinclair ◽  
...  

The equivalence of quasi-static indentation and low-velocity impact loading regimes has been assessed for composite overwrapped pressure vessels. Test specimens were assessed in detail in terms of the force–displacement response, and micro-focus computed tomography was used for qualitative and quantitative assessment of the associated damage to the constituent materials/interfaces. The results show that the force–displacement response follows an essentially similar pattern between the two loading regimes (within 10% for all cases). Quantitative assessment of the projected composite damage area and permanent deformation of the aluminium substrate as a function of peak indentor displacement also showed a high degree of equivalence between the loading regimes. It is concluded that quasi-static indentation represents a usable analogue for mechanistic assessment of low-velocity impact damage in the tested composite overwrapped pressure vessels.


Sign in / Sign up

Export Citation Format

Share Document