Water and steam injection in micro gas turbine supplied by hydrogen enriched fuels: Numerical investigation and performance analysis

Author(s):  
Fabrizio Reale ◽  
Raniero Sannino
2015 ◽  
Vol 12 (3) ◽  
Author(s):  
Zheng Dang ◽  
Hua Zhao ◽  
Guang Xi

A numerical model has been developed for the performance analysis of solid oxide fuel cell (SOFC)/micro gas turbine (MGT) hybrid systems with prereforming of natural gas, in which a quasi two-dimensional model has been built up to simulate the cell electrochemical reaction, heat and mass transfer within tubular SOFC. The developed model can be used not only to predict the overall performance of the SOFC/MGT hybrid system but also to reveal the nonuniform temperature distribution within SOFC unit. The effects of turbine inlet temperature (TIT) and pressure ratio (PR) on the performance of the hybrid system have been investigated. The results show that selecting smaller TIT or PR value will lead to relative higher system efficiency and lower CO2 emission ratio; however, this will raise the risk to destroy SOFC beyond the limitation temperature of electrolyte.


Author(s):  
Kenichiro Mochizuki ◽  
Satoshi Shibata ◽  
Umeo Inoue ◽  
Toshiaki Tsuchiya ◽  
Hiroko Sotouchi ◽  
...  

As the energy consumption has been increasing rapidly in the commercial sector in Japan, the market potential for the micro gas turbine is significant and it will be realized substantially if the thermal efficiency is improved. One of measures is to introduce the steam injection system using the steam generated by the heat recovery steam generator. Steam injection tests have been carried out using a micro gas turbine (Capstone C60). Test results showed that key performance parameters such as power output, thermal efficiency and emissions were improved by the steam injection. The stable operation of micro gas turbine with steam injection was confirmed under various operating conditions. Consequently, a micro gas turbine based co-generation package with steam injection driven by a heat recovery steam generator (HRSG) with supplementary firing is proposed.


2020 ◽  
Vol 173 ◽  
pp. 115236 ◽  
Author(s):  
Fenzhu Ji ◽  
Xiangbo Zhang ◽  
Farong Du ◽  
Shuiting Ding ◽  
Yunhai Zhao ◽  
...  

Author(s):  
Alessio Abrassi ◽  
Alberto Traverso ◽  
David Tucker ◽  
Eric Liese

Abstract A dynamic model is developed for a Micro Gas Turbine (MGT), characterized by an intrinsic free-spool configuration, coupled to large volumes. This is inspired by an experimental facility at the National Energy Technology Laboratory (NETL) called Hyper, which emulates a hybrid MGT and Fuel Cell system. The experiment and model can simulate stable and unstable operating conditions. The model is used to investigate the effects of different volumes on surge events, and to test possible strategies to safely avoid or recover from unstable compressor working conditions. The modelling approach started from the Greitzer lumped parameter approach, and it has been improved with integration of empirical methods and simulated components to better match the real Hyper plant layout and performance. Pressure, flow rate, and frequency plots are shown for the surge behavior comparing two different volume sizes, for cases where gas turbine shaft speed is uncontrolled (open loop) and controlled (closed loop). The ability to recover from a surge event is also demonstrated.


Sign in / Sign up

Export Citation Format

Share Document