Investigation on unconfined hydrogen cloud explosion with external turbulence

Author(s):  
Yuting Jiang ◽  
Yanchao Li ◽  
Yonghao Zhou ◽  
Haipeng Jiang ◽  
Kai Zhang ◽  
...  
Keyword(s):  
Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1005
Author(s):  
Viktor I. Terekhov

The study of flows with a high degree of turbulence in boundary layers, near-wall jets, gas curtains, separated flows behind various obstacles, as well as during combustion is of great importance for increasing energy efficiency of the flow around various elements in the ducts of gas-dynamic installations. This paper gives some general characteristics of experimental work on the study of friction and heat transfer on a smooth surface, in near-wall jets, and gas curtains under conditions of increased free-stream turbulence. Taking into account the significant effect of high external turbulence on dynamics and heat transfer of separated flows, a similar effect on the flow behind various obstacles is analyzed. First of all, the classical cases of flow separation behind a single backward-facing step and a rib are considered. Then, more complex cases of the flow around a rib oriented at different angles to the flow are analyzed, as well as a system of ribs and a transverse trench with straight and inclined walls in a turbulent flow around them. The features of separated flow in a turbulized stream around a cylinder, leading to an increase in the width of the vortex wake, frequency of vortex separation, and increase in the average heat transfer coefficient are analyzed. The experimental results of the author are compared with data of other researchers. The structure of separated flow at high turbulence—characteristic dimensions of the separation region, parameters of the mixing layer, and pressure distribution—are compared with the conditions of low-turbulent flow. Much attention is paid to thermal characteristics: temperature profiles across the shear layer, temperature distributions over the surface, and local and average heat transfer coefficients. It is shown that external turbulence has a much stronger effect on the separated flow than on the boundary layer on a flat surface. For separated flows, its intensifying effect on heat transfer is more pronounced behind a rib than behind a step. The factor of heat transfer intensification by external turbulence is most pronounced in the transverse cavity and in the system of ribs.


Author(s):  
C. Poelma ◽  
F. Beati ◽  
J. Westerweel ◽  
J.C.R. Hunt
Keyword(s):  

2010 ◽  
Vol 132 (4) ◽  
Author(s):  
N. J. Fiala ◽  
J. D. Johnson ◽  
F. E. Ames

A letterbox trailing edge configuration is formed by adding flow partitions to a gill slot or pressure side cutback. Letterbox partitions are a common trailing edge configuration for vanes and blades, and the aerodynamics of these configurations are consequently of interest. Exit surveys detailing total pressure loss, turning angle, and secondary velocities have been acquired for a vane with letterbox partitions in a large-scale low speed cascade facility. These measurements are compared with exit surveys of both the base (solid) and gill slot vane configurations. Exit surveys have been taken over a four to one range in chord Reynolds numbers (500,000, 1,000,000, and 2,000,000) based on exit conditions and for low (0.7%), grid (8.5%), and aerocombustor (13.5%) turbulence conditions with varying blowing rate (50%, 100%, 150%, and 200% design flow). Exit loss, angle, and secondary velocity measurements were acquired in the facility using a five-hole cone probe at a measuring station representing an axial chord spacing of 0.25 from the vane trailing edge plane. Differences between losses with the base vane, gill slot vane, and letterbox vane for a given turbulence condition and Reynolds number are compared providing evidence of coolant ejection losses, and losses due to the separation off the exit slot lip and partitions. Additionally, differences in the level of losses, distribution of losses, and secondary flow vectors are presented for the different turbulence conditions at the different Reynolds numbers. The letterbox configuration has been found to have slightly reduced losses at a given flow rate compared with the gill slot. However, the letterbox requires an increased pressure drop for the same ejection flow. The present paper together with a related paper (2008, “Letterbox Trailing Edge Heat Transfer—Effects of Blowing Rate, Reynolds Number, and External Turbulence on Heat Transfer and Film Cooling Effectiveness,” ASME, Paper No. GT2008-50474), which documents letterbox heat transfer, is intended to provide designers with aerodynamic loss and heat transfer information needed for design evaluation and comparison with competing trailing edge designs.


Author(s):  
Kengo Fukunaga ◽  
Masayoshi Satake ◽  
Noboru Maeda ◽  
Kazushi Shikata ◽  
Tomohisa Ezaka

Abstract In this study, ionic wind generated in corona discharge is focused for producing an air flow without having mechanical actuators. First, the kinetic energy conversion efficiency to ionic wind from electric power is experimentally estimated to be 0.32%. Then, it is confirmed that intermittent blows of ionic wind enable to produce vortex rings without using mechanical system. We adopt novel sub-chamber structure to avoid the concentration of the substance in a vortex ring low, so that the substance concentration transported to the target distance of 200 mm increases by 9%. As an application, the efficiency for moisture transportation is evaluated through experimental measurements. As a result, it is shown that the substance (moisture) can be transported at an efficiency of about 85% to target distance of 200 mm under conditions where the influence of external turbulence is small.


2012 ◽  
Vol 710 ◽  
pp. 482-504 ◽  
Author(s):  
Elad Rind ◽  
Ian P. Castro

AbstractDirect numerical simulation has been used to study the effects of external turbulence on axisymmetric wakes. In the absence of such turbulence, the time-developing axially homogeneous wake is found to have the self-similar properties expected whereas, in the absence of the wake, the turbulence fields had properties similar to Saffman-type turbulence. Merging of the two flows was undertaken for three different levels of external turbulence (relative to the wake strength) and it is shown that the presence of the external turbulence enhances the decay rate of the wake, with the new decay rates increasing with the relative strength of the initial external turbulence. The external turbulence is found to destroy any possibility of self-similarity within the developing wake, causing a significant transformation in the latter as it gradually evolves towards the former.


2003 ◽  
Vol 24 (6) ◽  
pp. 816-824 ◽  
Author(s):  
Nian-Sheng Cheng ◽  
B.Mutlu Sumer ◽  
Jørgen Fredsøe

Author(s):  
N. J. Fiala ◽  
J. D. Johnson ◽  
F. E. Ames

A letterbox trailing edge configuration is formed by adding flow partitions to a gill slot or pressure side cutback. Letterbox partitions are a common trailing edge configuration for vanes and blades and the aerodynamics of these configurations are consequently of interest. Exit surveys detailing total pressure loss, turning angle, and secondary velocities have been acquired for a vane with letterbox partitions in a large scale low speed cascade facility. These measurements are compared with exit surveys of both the base (solid) and gill slot vane configurations. Exit surveys have been taken over a four to one range in chord Reynolds numbers (500,000, 1,000,000, and 2,000,000) based on exit conditions and for low (0.7%), grid (8.5%), and aero-combustor (13.5%) turbulence conditions with varying blowing rate (50%, 100%, 150%, and 200% design flow). Exit loss, angle, and secondary velocity measurements were acquired in the facility using a five-hole cone probe at a measuring station representing an axial chord spacing of 0.25 from the vane trailing edge plane. Differences between losses with the base vane, gill slot vane and letterbox vane for a given turbulence condition and Reynolds number are compared providing evidence of coolant ejection losses and losses due to the separation off the exit slot lip and partitions. Additionally, differences in the level of losses, distribution of losses, and secondary flow vectors are presented for the different turbulence conditions at the different Reynolds numbers. The letterbox configuration has been found to have slightly reduced losses at a given flow rate compared with the gill slot. However, the letterbox requires an increased pressure drop for the same ejection flow. The present paper together with a related paper [1], which documents letterbox heat transfer, is intended to provide designers with aerodynamic loss and heat transfer information needed for design evaluation and comparison with competing trailing edge designs.


Sign in / Sign up

Export Citation Format

Share Document