scholarly journals Critical timing and extent of public health interventions to control outbreaks dominated by SARS-CoV-2 variants in Australia: a mathematical modelling study

Author(s):  
Zhuoru Zou ◽  
Christopher K. Fairley ◽  
Mingwang Shen ◽  
Nick Scott ◽  
Xianglong Xu ◽  
...  
BIOMATH ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 2110029
Author(s):  
Jacek Banasiak ◽  
Rachid Ouifki ◽  
Woldegebriel Assefa Woldegerima

In this paper, we provide a brief survey of mathematical modelling of malaria and how it is used to understand the transmission and progression of the disease and design strategies for its control to support public health interventions and decision-making. We discuss some of the past and present contributions of mathematical modelling of malaria, including the recent development of modelling the transmission-blocking drugs. We also comment on the complexity of the malaria dynamics and, in particular, on its multiscale character with its challenges and opportunities. We illustrate the discussion by presenting a curve fitting using a 95% confidence interval for the South African data for malaria from the years 2001-2018$ and provide projections for the number of malaria cases and deaths up to the year 2025.


2021 ◽  
Author(s):  
Zhuoru Zou ◽  
Christopher K Fairley ◽  
Mingwang Shen ◽  
Nick Scott ◽  
Xianglong Xu ◽  
...  

To prevent the catastrophic health and economic consequences from COVID-19 epidemics, some nations have aimed for no community transmission outside of quarantine. To achieve this, governments have had to respond rapidly to outbreaks with public health interventions. But the exact characteristics of an outbreak that trigger these measures differ and are poorly defined. We used existing data from epidemics in Australia to establish a practical model to assist stakeholders in making decisions about the optimal timing and extent of interventions. We found that the number of reported cases on the day that interventions commenced strongly predicted the size of the outbreaks. We quantified how effective interventions were at containing outbreaks in relation to the number of cases at the time the interventions commenced. We also found that containing epidemics from novel variants that had higher transmissibility would require more stringent interventions that commenced earlier. In contrast, increasing vaccination coverage would enable more relaxed interventions. Our model highlights the importance of early and decisive action in the early phase of an outbreak if governments aimed for zero community transmission, although new variants and vaccination coverage may change this.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Pooja Sengupta ◽  
Bhaswati Ganguli ◽  
Sugata SenRoy ◽  
Aditya Chatterjee

Abstract Background In this study we cluster the districts of India in terms of the spread of COVID-19 and related variables such as population density and the number of specialty hospitals. Simulation using a compartment model is used to provide insight into differences in response to public health interventions. Two case studies of interest from Nizamuddin and Dharavi provide contrasting pictures of the success in curbing spread. Methods A cluster analysis of the worst affected districts in India provides insight about the similarities between them. The effects of public health interventions in flattening the curve in their respective states is studied using the individual contact SEIQHRF model, a stochastic individual compartment model which simulates disease prevalence in the susceptible, infected, recovered and fatal compartments. Results The clustering of hotspot districts provide homogeneous groups that can be discriminated in terms of number of cases and related covariates. The cluster analysis reveal that the distribution of number of COVID-19 hospitals in the districts does not correlate with the distribution of confirmed COVID-19 cases. From the SEIQHRF model for Nizamuddin we observe in the second phase the number of infected individuals had seen a multitudinous increase in the states where Nizamuddin attendees returned, increasing the risk of the disease spread. However, the simulations reveal that implementing administrative interventions, flatten the curve. In Dharavi, through tracing, tracking, testing and treating, massive breakout of COVID-19 was brought under control. Conclusions The cluster analysis performed on the districts reveal homogeneous groups of districts that can be ranked based on the burden placed on the healthcare system in terms of number of confirmed cases, population density and number of hospitals dedicated to COVID-19 treatment. The study rounds up with two important case studies on Nizamuddin basti and Dharavi to illustrate the growth curve of COVID-19 in two very densely populated regions in India. In the case of Nizamuddin, the study showed that there was a manifold increase in the risk of infection. In contrast it is seen that there was a rapid decline in the number of cases in Dharavi within a span of about one month.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thomas J. Barrett ◽  
Karen C. Patterson ◽  
Timothy M. James ◽  
Peter Krüger

AbstractAs we enter a chronic phase of the SARS-CoV-2 pandemic, with uncontrolled infection rates in many places, relative regional susceptibilities are a critical unknown for policy planning. Tests for SARS-CoV-2 infection or antibodies are indicative but unreliable measures of exposure. Here instead, for four highly-affected countries, we determine population susceptibilities by directly comparing country-wide observed epidemic dynamics data with that of their main metropolitan regions. We find significant susceptibility reductions in the metropolitan regions as a result of earlier seeding, with a relatively longer phase of exponential growth before the introduction of public health interventions. During the post-growth phase, the lower susceptibility of these regions contributed to the decline in cases, independent of intervention effects. Forward projections indicate that non-metropolitan regions will be more affected during recurrent epidemic waves compared with the initially heavier-hit metropolitan regions. Our findings have consequences for disease forecasts and resource utilisation.


Sign in / Sign up

Export Citation Format

Share Document