Comment on the published article “Dichroic ratio and order parameters of some sudan dyes doped in nematic liquid crystalline matrix” by A. Maleki et al., Optik, 126 (2015) 5473–5477

Optik ◽  
2017 ◽  
Vol 141 ◽  
pp. 146
Author(s):  
Wojciech Tomczyk
Optik ◽  
2015 ◽  
Vol 126 (24) ◽  
pp. 5473-5477 ◽  
Author(s):  
A. Maleki ◽  
Z. Seidali ◽  
M.S. Zakerhamidi ◽  
M.H. Majles Ara

2019 ◽  
Author(s):  
Richard Mandle ◽  
John W. Goodby

We compare the order parameters, orientational distribution functions (ODF) and heliconical tilt angles of the TB phase exhibited by a liquid-crystalline dimer (CB7CB) to a tetramer (O47) and hexamer (O67) by SAXS/WAXS. Following the N-TB phase transition we find that all order parameters decrease, and while 〈P2 〉 remains positive 〈P4 〉 becomes negative. For all three materials the order parameter 〈P6 〉 is near zero in both phases. The ODF is sugarloaf-like in the nematic phase and volcano-like in the TB phase, allowing us to estimate the heliconical tilt angle of each material and its thermal evolution. The heliconical tilt angle appears to be largely independent of the material studied despite the differing number of mesogenic units.


2005 ◽  
Vol 19 (07n09) ◽  
pp. 1135-1141 ◽  
Author(s):  
MONIKA CISZEWSKA ◽  
JANUSZ PLOCHARSKI

Hybrid electrorheological fluids comprising powdered conjugated polymers dispersed in solutions of a liquid crystalline polymer were prepared and studied. FeCl 3 doped poly(p-phenylene) and pyrolised polyacrylonitrile were chosen as the dispersed phase and poly(n-hexyl isocyanate) dissolved in xylene was used as the active liquid matrix. All the component materials were extensively characterized by various methods. Flow curves of the hybrid ER fluids were recorded under electric field and compared with analogous curves obtained for dispersions of the powders in silicone oil and with homogeneous solutions of the LC polymer in xylene. A very significant enhancement of the ER effect in the studied hybrid fluids was observed.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4722
Author(s):  
Sebastian Lalik ◽  
Olaf Stefańczyk ◽  
Dorota Dardas ◽  
Natalia Górska ◽  
Shin-ichi Ohkoshi ◽  
...  

The aim of this paper is to show, by systematic studies, the influence of γ-Fe2O3 nanoparticles on the physical parameters of the liquid crystalline matrix, exhibiting a ferroelectric phase in a wide temperature range. The detailed research was carried out by using diffraction (PXRD), microscopic (OM, SEM, FCPM, POM), thermal (DSC), optical (TLI), electric and spectroscopic (FTIR) methods. We show that even the smallest concentration of γ-Fe2O3 nanoparticles largely modifies the parameters of the ferroelectric SmC* phase, such as spontaneous polarization, switching time, tilt angle, rotational viscosity, dispersion anchoring energy coefficient and helix pitch. The admixture also causes a significant reduction in the temperature of phase transitions, broadening the SmA* phase at the expense of the SmC* phase and strong streaking of the texture. We present and explain the non-monotonic modification of these parameters with an increase in the nanoparticle concentration. The influence of oleic acid admixture on these parameters is also widely discussed. We have shown that certain parameters of organic-metal nanocomposites can be controlled by the appropriate amount of metal admixture.


Sign in / Sign up

Export Citation Format

Share Document