Photoluminescence and electron paramagnetic resonance properties of UV-B light emitting Gd3+ activated Y2O3 phosphor prepared by sol-gel method

Optik ◽  
2019 ◽  
Vol 176 ◽  
pp. 694-698 ◽  
Author(s):  
Vijay Singh ◽  
N. Singh ◽  
M.S. Pathak ◽  
V. Natarajan ◽  
Nitin A. Jadhav
1999 ◽  
Vol 112 (10) ◽  
pp. 565-568 ◽  
Author(s):  
N. Chiodini ◽  
F. Meinardi ◽  
F. Morazzoni ◽  
A. Paleari ◽  
R. Scotti ◽  
...  

2021 ◽  
Author(s):  
◽  
Rebecca Jane Sutton

<p>Organic light emitting diodes (OLEDs) are an emerging technology based on electrically conducting polymer films, with great promise for large area lighting and flexible ultra-thin displays. However, despite the rapid technological development, there is still a poor understanding of the degradation and spindependent recombination processes that take place inside an OLED. In this thesis, Electron Paramagnetic Resonance (EPR) was used to investigate these processes in blue-emitting OLEDs.  A successful procedure was developed and refined for fabricating OLEDs with the structure ITO/PEDOT:PSS/emissive layer/Al/Ag, with and without the PEDOT:PSS hole-transporting layer. The organic emissive layer was either F8BT, PFO, or PVK:OXD-7:FIrpic (PB). These OLEDs were fabricated in air and with a geometry optimised for EPR experiments. Critical features for satisfactory devices were found to be a sufficiently thick organic layer and minimal exposure to the air.  A compact apparatus was developed for simultaneous light output, current, and voltage measurements on the OLEDs while in an inert glove box environment. Electroluminescence and current-voltage parameters measured for these devices showed predominantly trap-controlled space-charge-limited conduction.   OLEDs with PFO as the emissive layer and with a PEDOT:PSS layer were investigated with conventional, electrically-detected (ED) and optically-detected (OD) EPR techniques. EDEPR and ODEPR signals were observed at ~9.2 GHz and in the low (<50 mT) and high (~330 mT) magnetic field regimes and were found to change markedly with time during operation as the device degraded. The low field signals initially showed a composite broad quenching and superimposed narrow enhancing response centred around zero field strength. These signals were attributed to magneto-resistance (MR) and magneto-electroluminescence (MEL). Following operational ageing, a third, narrow quenching line was observed in the MR and the ratio of the initial two MR responses changed substantially. These effects are tentatively attributed to a hyperfine interaction.  For both EDEPR and ODEPR, quenching high field resonances with a g-value (gyromagnetic ratio) of 2.003±0.001 were observed. The current-quenching resonance gradually diminished during operation and after 4–5 hours was replaced by a current-enhancing resonance. The appearance of this latter resonance could be explained by chemical changes in the OLED due to the diffusion of oxygen through the device from the oxygen-plasma-treated ITO. A working model is proposed which can explain this observed change as spindependent trapping and recombination at free radicals, although the model requires further experimentation to test its validity.</p>


1999 ◽  
Vol 48 (9) ◽  
pp. 1773
Author(s):  
XIE DA-TAO ◽  
WU JIN-GUANG ◽  
MA GANG ◽  
YAN WEN-FEI ◽  
ZHOU WEI-JIN ◽  
...  

2008 ◽  
Vol 133 (1) ◽  
pp. 33-39 ◽  
Author(s):  
Chongfeng Guo ◽  
Wei Zhang ◽  
Lin Luan ◽  
Tao Chen ◽  
Hong Cheng ◽  
...  

2010 ◽  
Vol 434-435 ◽  
pp. 214-216 ◽  
Author(s):  
Ji Ming Zhang ◽  
Dong Lin Zhao ◽  
Zeng Min Shen

Abstract. Green light emitting Mn2+-doped Zn2SiO4 (Zn2SiO4:Mn2+) phosphor nano-particles were synthesized by sol-gel method combined with a furnace firing from the sol-gel solution made with ZnO, MnCO3 and tetraethoxysilan. The influences of annealing temperatures on the microstructures and photoluminescent properties of the Zn2SiO4:Mn2+ phosphors were investigated. The structural details of the phosphors were examined through XRD and SEM. The photoluminescent properties of the Zn2SiO4:Mn2+ phosphors were characterized by excitation and emission spectra. The results indicate that the XRD patterns of the Zn2SiO4:Mn2+ phosphors exhibit a willemite structure (-Zn2SiO4). Green photoluminescence whose emission peak is located at 525 nm were observed from the synthesized phosphor particles under UV excitation. The photoluminescent mechanisms of the Zn2SiO4:Mn2+ phosphors were discussed.


Sign in / Sign up

Export Citation Format

Share Document