Impact of solvent on the downconversion efficiency of the N-GQDs/PMMA layer: Application in CIGS solar cells

Optik ◽  
2022 ◽  
pp. 168569
Author(s):  
Firoz Khan ◽  
Thamraa Alshahrani ◽  
Imran Fareed ◽  
Masoud Al-Rasheidi ◽  
Nafis Ahmad ◽  
...  
2021 ◽  
Vol 223 ◽  
pp. 110948
Author(s):  
Alban Lafuente-Sampietro ◽  
Katsuhisa Yoshida ◽  
Shenghao Wang ◽  
Shogo Ishizuka ◽  
Hajime Shibata ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4849
Author(s):  
Chan Hyeon Park ◽  
Jun Yong Kim ◽  
Shi-Joon Sung ◽  
Dae-Hwan Kim ◽  
Yun Seon Do

In this paper, we propose an optimized structure of thin Cu(In,Ga)Se2 (CIGS) solar cells with a grating aluminum oxide (Al2O3) passivation layer (GAPL) providing nano-sized contact openings in order to improve power conversion efficiency using optoelectrical simulations. Al2O3 is used as a rear surface passivation material to reduce carrier recombination and improve reflectivity at a rear surface for high efficiency in thin CIGS solar cells. To realize high efficiency for thin CIGS solar cells, the optimized structure was designed by manipulating two structural factors: the contact opening width (COW) and the pitch of the GAPL. Compared with an unpassivated thin CIGS solar cell, the efficiency was improved up to 20.38% when the pitch of the GAPL was 7.5–12.5 μm. Furthermore, the efficiency was improved as the COW of the GAPL was decreased. The maximum efficiency value occurred when the COW was 100 nm because of the effective carrier recombination inhibition and high reflectivity of the Al2O3 insulator passivation with local contacts. These results indicate that the designed structure has optimized structural points for high-efficiency thin CIGS solar cells. Therefore, the photovoltaic (PV) generator and sensor designers can achieve the higher performance of photosensitive thin CIGS solar cells by considering these results.


2011 ◽  
Vol 519 (21) ◽  
pp. 7212-7215 ◽  
Author(s):  
Z. Jehl ◽  
F. Erfurth ◽  
N. Naghavi ◽  
L. Lombez ◽  
I. Gerard ◽  
...  
Keyword(s):  

Author(s):  
Hadi Afshari ◽  
Brandon K Durant ◽  
Khalid Hossain ◽  
Dmitry Poplavskyy ◽  
Bibhudutta Rout ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4268
Author(s):  
Jessica de Wild ◽  
Gizem Birant ◽  
Guy Brammertz ◽  
Marc Meuris ◽  
Jef Poortmans ◽  
...  

Ultrathin Cu(In,Ga)Se2 (CIGS) absorber layers of 550 nm were grown on Ag/AlOx stacks. The addition of the stack resulted in solar cells with improved fill factor, open circuit voltage and short circuit current density. The efficiency was increased from 7% to almost 12%. Photoluminescence (PL) and time resolved PL were improved, which was attributed to the passivating properties of AlOx. A current increase of almost 2 mA/cm2 was measured, due to increased light scattering and surface roughness. With time of flight—secondary ion mass spectroscopy, the elemental profiles were measured. It was found that the Ag is incorporated through the whole CIGS layer. Secondary electron microscopic images of the Mo back revealed residuals of the Ag/AlOx stack, which was confirmed by energy dispersive X-ray spectroscopy measurements. It is assumed to induce the increased surface roughness and scattering properties. At the front, large stains are visible for the cells with the Ag/AlOx back contact. An ammonia sulfide etching step was therefore applied on the bare absorber improving the efficiency further to 11.7%. It shows the potential of utilizing an Ag/AlOx stack at the back to improve both electrical and optical properties of ultrathin CIGS solar cells.


Solar Energy ◽  
2020 ◽  
Vol 206 ◽  
pp. 473-478 ◽  
Author(s):  
Fan Sui ◽  
Mingyue Pan ◽  
Zhengyan Wang ◽  
Ming Chen ◽  
Wenjie Li ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Chuan Lung Chuang ◽  
Ming Wei Chang ◽  
Nien Po Chen ◽  
Chung Chiang Pan ◽  
Chung Ping Liu

Indium tin oxide (ITO) thin films were grown on glass substrates by direct current (DC) reactive magnetron sputtering at room temperature. Annealing at the optimal temperature can considerably improve the composition, structure, optical properties, and electrical properties of the ITO film. An ITO sample with a favorable crystalline structure was obtained by annealing in fixed oxygen/argon ratio of 0.03 at 400°C for 30 min. The carrier concentration, mobility, resistivity, band gap, transmission in the visible-light region, and transmission in the near-IR regions of the ITO sample were-1.6E+20 cm−3,2.7E+01 cm2/Vs,1.4E-03 Ohm-cm, 3.2 eV, 89.1%, and 94.7%, respectively. Thus, annealing improved the average transmissions (400–1200 nm) of the ITO film by 16.36%. Moreover, annealing a copper-indium-gallium-diselenide (CIGS) solar cell at 400°C for 30 min in air improved its efficiency by 18.75%. The characteristics of annealing ITO films importantly affect the structural, morphological, electrical, and optical properties of ITO films that are used in solar cells.


Sign in / Sign up

Export Citation Format

Share Document