Milling chatter control based on asymmetric stiffness

Author(s):  
Denghui Li ◽  
Hongrui Cao ◽  
Jinxin Liu ◽  
Xingwu Zhang ◽  
Xuefeng Chen
1999 ◽  
Author(s):  
Douglas R. Browning ◽  
Igor Golioto ◽  
Norman B. Thompson

Abstract A new approach to chatter control in milling is presented in this paper. The proof-of-concept control system comprises a tool holder, analog and digital control electronics, and power amplifiers to drive the actuator elements. The active tool holder, designed to impart counter-vibration forces to the milling tool, mounts to existing machines with a standard industrial interface. Sensors and piezoelectric actuators are imbedded in the stationary portion of the tool holder and are therefore fixed relative to the body of the milling machine. The controller operates on the two sensor signals, producing two orthogonal actuator drive signals to oppose resonant tool vibrations induced from the cutting forces. The paper first introduces the fundamental concepts of milling chatter and their relation to the described active system. The actuation, sensing and controller details follow. The influence of the tool holder on system dynamics and cutting stability is also addressed. Cutting test results using a titanium alloy are then described, demonstrating an improvement of a factor of five in surface finish relative to the uncontrolled, chatter-dominated case.


2011 ◽  
Vol 697-698 ◽  
pp. 223-228
Author(s):  
Yi Qing Yang ◽  
T.T. Chen

The most common tunings for the TMD in the field of vibration suppression are H∞ and H2. However, regenerative machine tool chatter is a complex problem with many variations, which therefore requires a new tuning for the optimum chatter suppression. The real part based tuning is investigated numerically by employing the minimax numerical approach, which aims to maximize the minimum real part of the primary structure under the harmonic excitation. The performances of multiple TMDs system are discussed. A face milling case is employed to verify the benefits of multiple TMDs in increasing the chatter free depth of cut. It is concluded that multiple TMDs configuration are more effective than single TMD in chatter control.


2021 ◽  
pp. 107754632098820
Author(s):  
Bashir B Muhammad ◽  
Muhammad Bashir ◽  
Mukhtar F Hamza ◽  
Mustapha Abdulhadi ◽  
Muhammad A Shehu ◽  
...  

A chatter mark is a result of irregular vibration that affects the milling process, which results in poor surface finish, reduced work quality, machine impairment, and high production cost. This work presents an active feedback controller design using a new response matrix to suppress the free vibration in the milling process. The proposed controller considers feed rate, tooth passing frequency, and time-varying dynamic milling force coefficients. A milling experiment verifies the effect of the proposed method. The method provides a reliable way of tackling chatter vibration in an industrial process. The procedure is technically and economically beneficial.


1992 ◽  
Vol 114 (2) ◽  
pp. 146-157 ◽  
Author(s):  
T. Delio ◽  
J. Tlusty ◽  
S. Smith

This paper compares various sensors and shows that a microphone is an excellent sensor to be used for chatter detection and control. Comparisons are made between the microphone and some other common sensors (dynamometers, displacement probes, and accelerometers) regarding sensing of unstable milling. It is shown that the signal from the microphone provides a competitive, and in many instances a superior, signal tht can be utilized to identify chatter. Using time domain milling simulations of low-radial-immersion, low-feed, finishing operations it is shown that for these cuts (especially at relatively high speeds) chatter is not adequately reflected in the force signal because of the short contact time, but that it is clearly seen in the displacement signal. Using the dynamics of existing production milling machines it is shown how the microphone is more suitable to chatter detection than other remotely placed displacement sensors, especially in cases that involve flexible tooling and workpieces. Aspects important for practical implementation of a microphone in an industrial setting are discussed. Limitations of the microphone are addressed, such as directional considerations, frequency response, and environmental sensitivity (i.e., workspace enclosure, room size, etc). To compensate for expected unwanted noises, commonly known directionalization techniques such as isolation, collection, and intensity methods are suggested to improve the ability of the microphone to identify chatter by reducing or eliminating background and extraneous noises. Using frequency domain processing and the deterministic frequency domain chatter theory, a microphone is shown to provide a proper and consistent signal for reliable chatter detection and control. Cutting test records for an operating, chatter recognition and control system, using a microphone, are presented; and numerous examples of chatter control are listed which include full and partial immersion, face-and end-milling cuts.


1972 ◽  
Vol 94 (1) ◽  
pp. 5-10 ◽  
Author(s):  
C. Nachtigal

The analysis of machine tool chatter from frequency domain considerations is generally accepted as a valid representation of the regenerative chatter phenomenon. However, active control of regenerative chatter is still in its embryonic stage. It was established in reference [2] that a measurement of the cutting force could be effectively used in conjunction with a controller and a tool position servo system to increase the stability of an engine lathe and to improve its transient response. This paper presents the design basis for such a system, including both analytical and experimental considerations. The design procedure stems from a real part stability criterion based on the work by Merritt [1]. Because of the unknown variability in the dynamics of a machine tool system, the controller parameters were chosen to accomodate some mismatch between structure and tool servo dynamics. Experimental tests to determine the stability zone of the controlled machine tool system qualitatively confirmed the analytical design results. The experimental results were consistent in that the transient response tests confirmed the frequency domain stability tests. It was also demonstrated experimentally that the equivalent static stiffness of a flexible work-piece system could be substantially increased.


2013 ◽  
Vol 753-755 ◽  
pp. 1816-1820 ◽  
Author(s):  
Zhen Kun Hu ◽  
Ming Wang ◽  
Tao Zan

The dynamic vibration absorber (DVA) is generally used to suppress the machining vibration in boring processes. The DVA consists of an additional massspringdamper sub-system, and needs accurately tuning of its natural frequency and damping ratio to match the main structure for vibration control. For obtaining the optimal performance of the DVA, the parameters of the DVA used in a boring bar is identified using modal correlation method, which combines the finite element analysis method with test modal method to validate the FEMs results. The analysis results show that the modal correlation method is an effective and simple method to accurately identify the dynamic parameters of DVA and guarantee the optimal design of the DVA for boring chatter control.


Author(s):  
Jonathan A. Embry ◽  
Suzanne Weaver Smith ◽  
Bruce L. Walcott

Abstract The boring bar is used to provide smooth, accurate cuts in materials. However, when the length to diameter (L/D) ratio of the boring bar becomes large, low-frequency vibration, or chatter, results. Initial attempts to control this unwanted vibration with an active absorber have been successful, but in some configurations problems remain. In this paper, algorithms for flexible structure identification widely used in the aerospace industry are applied to a number of boring bar setups to identify the vibration characteristics of each system. Emphasis is placed on one class of methods which includes the Eigensystem Realization Algorithm (ERA), developed for identification of flexible space structures. The resulting identified characteristics are compared and contrasted. Results are also compared to finite element analysis predictions. From the current identification results, implications for chatter control are discussed, including the possibility of nonlinear modal interactions.


Sign in / Sign up

Export Citation Format

Share Document