scholarly journals Technical scheme and application of pressure-relief gas extraction in multi-coal seam mining region

2018 ◽  
Vol 28 (3) ◽  
pp. 483-489 ◽  
Author(s):  
Chang Xiaocun ◽  
Tian Hui

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Haibo Liu ◽  
Xucheng Xiao ◽  
Zhihang Shu

No. 21 coal seam is a full-thickness structured soft coal in Dengfeng coalfield. The coal seam gas-bearing capacity is high, and the permeability is poor, thus resulting in serious coal and gas outburst dynamic disasters. According to the gas geological conditions of Baoyushan Mine, No. 17 coal seam without outburst danger, which is 0.5 m thick and 23.4 m under No. 21 coal seam, was mined in advance as the lower protective seam. At the same time, a gas extraction roadway was constructed in No. 21 coal seam floor. Cross-layer boreholes were constructed to extract the pressure relief gas of No. 21 coal seam for comprehensive treatment of mine gas. The mobile deformation of the overburden coal and rock mass after mining No. 17 coal seam, the fracture development characteristics of No. 21 coal seam, the pressure relief gas migration of the coal seam, the gas extraction, and the outburst danger elimination were studied. The research findings showed the following: (1) after mining No. 17 coal seam, the overburden hard and extremely thick limestone roof sagged slowly, albeit leading to no craving zone. (2) The permeability of No. 21 coal seam was increased by about 394 times, from 0.0012 mD to 0.4732 mD. (3) After the extraction of pressure relief gas through the gas extraction roadway on the floor through the cross-layer borehole, the gas pressure of No. 21 coal seam decreased from 1.17 MPa to 0.12 MPa, while the gas content decreased from 9.74 m3/t to 3.1 m3/t, which suggested that the coal and gas outburst dynamic danger of No. 21 coal seam was totally eliminated and the goal of safe and efficient mining in the mine was realized.





Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Cunfang Zhu ◽  
Shuang Cai

How to quickly eliminate outburst in long-distance through-coal seam tunnels is one of the major challenges faced by the tunnel industry in mountainous areas. Compared with coal mine rock crosscut coal uncovering, the work surrounding the rock of through-coal seam tunnels has a high degree of breakage, large cross-section of coal uncovering, and tight time and space. In this paper, a method of networked slotting in long-distance through-coal seam tunnels for rapid pressure relief and outburst elimination is proposed. Based on this method, the corresponding mathematical governing equations and numerical simulation models have been established. The optimal borehole arrangement spacing and the slot arrangement spacing obtained by numerical optimization are 2.85 m and 3.1 m, respectively. Field gas production data of through-coal seam tunnels show that compared with the traditional dense-borehole gas extraction, the method of networked slotting in long-distance through-coal seam tunnels for rapid pressure relief and outburst elimination can shorten the extraction time by about 66%, the net quantity of peak extraction is increased by 3.55 times, and the total quantity of gas extraction when reaching the outburst prevention index is increased by 1.26 times, which verifies the feasibility of this method and the reliability of numerical simulation results. This study could be used as a valuable example for other coal deposits being mined under similar geological conditions.



2016 ◽  
Vol 26 (4) ◽  
pp. 637-643 ◽  
Author(s):  
Banghua Yao ◽  
Qingqing Ma ◽  
Jianping Wei ◽  
Jianhong Ma ◽  
Donglin Cai


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Feng Wang ◽  
Zeqi Jie ◽  
Bo Ma ◽  
Weihao Zhu ◽  
Tong Chen

Pressure-relief coal mining provides an effective way to decrease stress concentration in deep mining and ensures mining safety. However, there is currently a lack of research and field verification on the pressure-relief efficiency and influencing factors during upper seam extraction on the lower seam. In order to make up for this deficiency, in this study, field measurements were conducted in panel Y485, which has a maximum depth of 1030 m and is partially under the goaf of the upper 5# seam in the Tangshan coal mine, China, and evolution of advanced abutment pressure was analyzed. Numerical simulations were conducted to study of influence of key strata on advanced abutment pressure. Influence mechanisms of the upper seam extraction on the advanced abutment pressure distribution during lower seam extraction were revealed. The results indicate that the distribution of advanced abutment stress is influenced by the key strata in the overlying strata. The key strata above the upper coal seam were fractured due to the upper coal seam mining, and the advanced abutment stress was only influenced by the key strata between the two seams during lower coal seam mining. When key strata were present between two seams, the extraction of the lower seam still faces potential dynamic disasters after the extraction of the upper seam. In this case, it would be necessary to fracture the key strata between the two seams in advance for the purpose of mining safety. Key strata in the overlying strata of the 5# seam were fractured during extraction, and advanced abutment pressure was only influenced by the key strata located between the two mined seams. The influence distance of advanced abutment pressure in panel Y485 decreased from 73 m to 38 m, and the distance between the peak advanced abutment pressure and the panel decreased from 29 m to 20.5 m, achieving a pronounced pressure-relief effect.





2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Chaojun Fan ◽  
Sheng Li ◽  
Haohao Zhang ◽  
Zhenhua Yang

In order to enhance gas extraction from unloaded coal seam by drilling borehole in the floor roadway, the mechanism of stress relief improving permeability by protective coal seam mining was analyzed. Based on the multiphysics field theory, the hydraulic-mechanical coupling model of gas extraction in the unloading coal seam was established, and the gas extraction process by drilling borehole in the floor roadway in the overburden of Panyi Coal Mine 1551 (1) panel was simulated. The influence of different drilling arrangements on the gas extraction effect was analyzed. The results show that the permeability of protected coal seams is characterized by zoning and can be divided into the permeability-enhanced zone, the permeability-reduced zone, and the original permeability zone according to the stress state of coal seam. Under the condition of uniform borehole distribution, the gas pressure decreased slowly in the permeability-reduced zone and is still greater than 0.74 MPa after 180 days of extraction, and there is a large extraction blind area in the protected panel. Under the condition of nonuniform borehole distribution arrangement according to the characteristics of permeability zoning, the effective extraction area can almost cover the protected panel, and the blind extraction area is reduced by 91.22% when compared to uniform borehole distribution. These can provide a reference for unloading gas extraction under similar conditions.



2014 ◽  
Vol 875-877 ◽  
pp. 1863-1870 ◽  
Author(s):  
Jian Liu ◽  
Jie Zhao ◽  
Ming Song Gao

By study on underlying coal and strata pressure-relief principle and the gas extraction technique under upper protective layer mining, we obtain the stress change and distribution law of underlying coal-rock mass. We analyze the deformation law and fracture development characteristics of underlying coal-rock mass movement. With mining proceeding ahead, the total floor coal and rock experiences compression deformation first, then expansion deformation and re-compaction of the continuous periodic destruction. Based on different development characteristics and status of underlying coal-rock mass, the underlying coal-rock mass under an effect of upper protective layer mining was divided into the floor heave fracture zone and the floor heave deformation zone in this paper. The permeability coefficient of change law of underlying the coal seam as follows: the original value-small decreasing-increasing greatly-reducing-stability at last. The field test for upper protective layer mining of Zhang-ji coal mine of Huainan shows that the effect of pressure relief of protected seam is very good. So it eliminates the risk of gas outburst, ensuring safety mining of the protected seam. The research has an important significance for safety and efficient production under similar exploitation conditions of low-permeability with high gas and outburst risk coal seam.



PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0246199
Author(s):  
Shuhao Fang ◽  
Hongqing Zhu ◽  
Yujia Huo ◽  
Yilong Zhang ◽  
Haoran Wang ◽  
...  

To design underside protective seam strip layout. Similarity model experiments, numerical simulations and theoretical calculations are used to quantitatively study the pressure relief protection effect of different strip widths, dip angles and coal pillar widths of a thin underside protective seam under deeply buried conditions. The optimal strip width range is obtained according to the change law of strain during the mining process of the underside protective seam in a similar model experiment. The change law of the expansion of the protected coal seam is obtained and the fitting surfaces among the dip angle and strip width of the coal seam with the protection distance and pressure relief angle along the strike and dip of the protected coal seam are established according to the numerical simulation results of underside protective seam mining. It is concluded that the best pressure relief effect can be achieved when the dip angle is 16.7° and the strip width is 70 m. According to the stability threshold of coal pillars considered in strip mining theory, the coal pillar width is calculated to be 50 m. Similarity model experiments and numerical simulations of protected coal seam mining verify the pressure relief effect of the designed protective seam strip width and pillar width. A calculation method of the protective seam strip width, position and pillar width required by the specific width of the protected seam is proposed.



Sign in / Sign up

Export Citation Format

Share Document