Xenogeneic bone substitute materials-differences in processing techniques induce different extend of vascularization and foreign body giant cells: in vivo and clinical studies

Author(s):  
S. Ghanaati ◽  
J. Lorenz ◽  
M. Barbeck ◽  
A. Teiler ◽  
P. Booms ◽  
...  
2021 ◽  
Vol 22 (9) ◽  
pp. 4442
Author(s):  
Mike Barbeck ◽  
Marie-Luise Schröder ◽  
Said Alkildani ◽  
Ole Jung ◽  
Ronald E. Unger

In addition to their chemical composition various physical properties of synthetic bone substitute materials have been shown to influence their regenerative potential and to influence the expression of cytokines produced by monocytes, the key cell-type responsible for tissue reaction to biomaterials in vivo. In the present study both the regenerative potential and the inflammatory response to five bone substitute materials all based on β-tricalcium phosphate (β-TCP), but which differed in their physical characteristics (i.e., granule size, granule shape and porosity) were analyzed for their effects on monocyte cytokine expression. To determine the effects of the physical characteristics of the different materials, the proliferation of primary human osteoblasts growing on the materials was analyzed. To determine the immunogenic effects of the different materials on human peripheral blood monocytes, cells cultured on the materials were evaluated for the expression of 14 pro- and anti-inflammatory cytokines, i.e., IL-6, IL-10, IL-1β, VEGF, RANTES, IL-12p40, I-CAM, IL-4, V-CAM, TNF-α, GM-CSF, MIP-1α, Il-8 and MCP-1 using a Bio-Plex® Multiplex System. The granular shape of bone substitutes showed a significant influence on the osteoblast proliferation. Moreover, smaller pore sizes, round granular shape and larger granule size increased the expression of GM-CSF, RANTES, IL-10 and IL-12 by monocytes, while polygonal shape and the larger pore sizes increased the expression of V-CAM. The physical characteristics of a bone biomaterial can influence the proliferation rate of osteoblasts and has an influence on the cytokine gene expression of monocytes in vitro. These results indicate that the physical structure of a biomaterial has a significant effect of how cells interact with the material. Thus, specific characteristics of a material may strongly affect the regenerative potential in vivo.


2015 ◽  
Vol 41 (6) ◽  
pp. e257-e266 ◽  
Author(s):  
Jonas Lorenz ◽  
Alica Kubesch ◽  
Tadas Korzinskas ◽  
Mike Barbeck ◽  
Constantin Landes ◽  
...  

This study compared the material-specific tissue response to the synthetic, hydroxyapatite-based bone substitute material NanoBone (NB) with that of the xenogeneic, bovine-based bone substitute material Bio-Oss (BO). The sinus cavities of 14 human patients were augmented with NB and BO in a split-mouth design. Six months after augmentation, bone biopsies were extracted for histological and histomorphometric investigation prior to dental implant insertion. The following were evaluated: the cellular inflammatory pattern, the induction of multinucleated giant cells, vascularization, the relative amounts of newly formed bone, connective tissue, and the remaining bone substitute material. NB granules were well integrated in the peri-implant tissue and were surrounded by newly formed bone tissue. Multinucleated giant cells were visible on the surfaces of the remaining granules. BO granules were integrated into the newly formed bone tissue, which originated from active osteoblasts on their surface. Histomorphometric analysis showed a significantly higher number of multinucleated giant cells and blood vessels in the NB group compared to the BO group. No statistical differences were observed in regard to connective tissue, remaining bone substitute, and newly formed bone. The results of this study highlight the different cellular reactions to synthetic and xenogeneic bone substitute materials. The significantly higher number of multinucleated giant cells within the NB implantation bed seems to have no effect on its biodegradation. Accordingly, the multinucleated giant cells observed within the NB implantation bed have characteristics more similar to those of foreign body giant cells than to those of osteoclasts.


2016 ◽  
Vol 60 (7) ◽  
pp. 3897-3905 ◽  
Author(s):  
D. Pförringer ◽  
A. Obermeier ◽  
M. Kiokekli ◽  
H. Büchner ◽  
S. Vogt ◽  
...  

ABSTRACTSubstitution of bones is a well-established, necessary procedure to treat bone defects in trauma and orthopedic surgeries. For prevention or treatment of perioperative infection, the implantation of resorbable bone substitute materials carrying antibiotics is a necessary treatment. In this study, we investigated the newly formulated calcium-based resorbable bone substitute materials containing either gentamicin (CaSO4-G [Herafill-G]), vancomycin (CaSO4-V), or tobramycin (Osteoset). We characterized the released antibiotic concentration per unit. Bone substitute materials were implanted in bones of rabbits via a standardized surgical procedure. Clinical parameters and levels of the antibiotic-releasing materials in serum were determined. Local concentrations of antibiotics were measured using antimicrobial tests of bone tissue. Aminoglycoside release kineticsin vitroper square millimeter of bead surface showed the most prolonged release for gentamicin, followed by vancomycin and, with the fastest release, tobramycin.In vivolevel in serum detected over 28 days was highest for gentamicin at 0.42 μg/ml, followed by vancomycin at 0.11 μg/ml and tobramycin at 0.04 μg/ml. The clinical parameters indicated high biocompatibility for materials used. None of the rabbits subjected to the procedure showed any adverse reaction. The highest availability of antibiotics at 14.8 μg/g on day 1 in the cortical tibiaex vivowas demonstrated for gentamicin, decreasing within 14 days. In the medulla, vancomycin showed a high level at 444 μg/g on day 1, decreasing continuously over 14 days, whereas gentamicin decreased faster within the initial 3 days. The compared antibiotic formulations varied significantly in release kinetics in serum as well as locally in medulla and cortex.


Biomedicines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 61
Author(s):  
Sebastian Blatt ◽  
Daniel G.E. Thiem ◽  
Andreas Pabst ◽  
Bilal Al-Nawas ◽  
Peer W. Kämmerer

The impaired angiogenic potential of bone substitute materials (BSMs) may limit regenerative processes. Therefore, changes in the angiogenetic properties of different BSMs in combination with platelet-rich fibrin (PRF) in comparison to PRF alone, as well as to native BSMs, were analyzed in vitro and in vivo to evaluate possible clinical application. In vitro, four BSMs of different origins (allogeneic, alloplastic, and xenogeneic) were biofunctionalized with PRF and compared to PRF in terms of platelet interaction and growth factor release (vascular endothelial growth factor (VEGF), tissue growth factor ß (TGFß) and platelet-derived growth factor (PDGF)) after 15 min. To visualize initial cell–cell interactions, SEM was performed. In vivo, all BSMs (±PRF) were analyzed after 24 h for new-formed vessels using a chorioallantoic membrane (CAM) assay. Especially for alloplastic BSMs, the addition of PRF led to a significant consumption of platelets (p = 0.05). PDGF expression significantly decreased in comparison to PRF alone (all BSMs: p < 0.013). SEM showed the close spatial relation of each BSM and PRF. In vivo, PRF had a significant positive pro-angiogenic influence in combination with alloplastic (p = 0.007) and xenogeneic materials (p = 0.015) in comparison to the native BSMs. For bio-activated xenogeneic BSMs, the branching points were also significantly increased (p = 0.005). Finally, vessel formation was increased for BSMs and PRF in comparison to the native control (allogeneic: p = 0.046; alloplastic: p = 0.046; and xenogeneic: p = 0.050). An early enhancement of angiogenetic properties was demonstrated when combining BSMs with PRF in vitro and led to upregulated vessel formation in vivo. Thus, the use of BSMs in combination with PRF may trigger bony regeneration in clinical approaches.


2021 ◽  
Author(s):  
Arnat Balabiyev ◽  
Nataly P. Podolnikova ◽  
Jacquelyn A. Kilbourne ◽  
D. Page Baluch ◽  
David Lowry ◽  
...  

ABSTRACTImplantation of biomaterials and medical devices in the body triggers the foreign body reaction (FBR) which is characterized by macrophage fusion at the implant surface leading to the formation of foreign body giant cells and the development of the fibrous capsule enveloping the implant. While adhesion of macrophages to the surface is an essential step in macrophage fusion and implanted biomaterials are known to rapidly acquire a layer of host proteins, a biological substrate that is responsible for this process in vivo is unknown. Here we show that mice with genetically-imposed fibrinogen deficiency display a dramatic reduction of macrophage fusion on implanted biomaterials and are protected from the formation of fibrin-containing granulation tissue, a precursor of the fibrous capsule. Furthermore, macrophage fusion on biomaterials implanted in FibAEK mice that express a mutated form of fibrinogen incapable of thrombin-mediated polymerization was strongly reduced. Surprisingly, despite the lack of fibrin, the capsule was formed in FibAEK mice, although it had a different composition and distinct mechanical properties than that in wild-type mice. Specifically, while mononuclear α-SMA-expressing macrophages embedded in the capsule of both strains of mice secreted collagen, the amount of collagen and its density in the tissue of FibAEK mice was reduced. These data identify fibrin polymer as a key biological substrate driving the development of the FBR.


2010 ◽  
Vol 76 ◽  
pp. 214-223
Author(s):  
Christine Knabe ◽  
Georg Berger ◽  
Renate Gildenhaar ◽  
Paul Ducheyne ◽  
Michael Stiller

Although autogenous bone grafts are currently the standard of care for bone reconstruction in implant dentistry, bone substitute materials are extensively studied in order to avoid harvesting autogenous bone. Recently, the use of tricalcium phosphate (TCP) and bioactive glass 45S5 particles as alloplastic bone graft materials for alveolar ridge augmentation and sinus floor elevation procedures has received increasing attention in implant dentistry. However, given the clinical findings with these current bone substitute materials there continues to be interest in bone substitute materials which degrade more rapidly, but still stimulate osteogenesis at the same time. As a result considerable efforts have been undertaken to produce rapidly resorbable bone substitute materials, which exhibit good bone bonding behaviour by stimulating enhanced bone formation at the interface in combination with a high degradation rate. This has led to the synthesis of a new series of bioactive, rapidly resorbable calcium alkali phosphate materials. These are glassy crystalline calcium alkali orthophosphates, which exhibit stable crystalline Ca2KNa(PO4)2 phases. These materials have a higher solubility than TCP and therefore they are designed to exhibit a higher degree of biodegradability than TCP. On this basis, they are considered as excellent alloplastic materials for alveolar ridge augmentation. In order to evaluate the osteogenic potential in vitro, we first examined the effect of various rapidly resorbable calcium alkali orthophosphate bone grafting materials on the expression of osteogenic markers characteristic of the osteoblastic phenotype in vitro and compared this behaviour to that of the currently clinically used materials β-tricalcium phosphate (TCP) and bioactive glass 45S5. These studies showed that several calcium alkali orthophosphate materials supported osteoblast differentiation to a greater extent than TCP. In specific, we were able to demonstrate that the glassy-crystalline calium alkali orthophosphate material GB9, which contains the crystalline phase Ca2KNa(PO4)2 and a small amorphous portion containing silica phosphate, had a significantly greater stimulatory effect on osteoblastic proliferation and differentiation when compared to β-TCP, preconditioned bioactive glass 45S5, and other calcium alkali orthophosphate materials of varying composition. Applying this type of in vitro assays is based on the hypothesis that enhanced osteoblastic cell differentiation in vitro leads to more expeditious and more copious bone formation at the bone-biomaterial interface in vivo. In order to test this hypothesis correlation of the in vitro and in vivo data is needed. This includes (1) correlating quantitative expression of the osteogenic markers in vitro with the amount of bone formed after bioceramics implantation. (2) Quantifying the expression of these markers in histological sections obtained from in vivo experiments in comparison to the expression of the various markers in vitro. To this end, we then examined the effect of the same selection of bioactive ceramics (previously studied in vitro) on osteogenic marker expression and bone formation after implantation in the sheep mandible and sinus floor in vivo. Of the various grafting materials studied, GB9 showed the best bone-bonding behavior and had the greatest stimulatory effect on bone formation and expression of osteogenic markers, while exhibiting the highest biodegradability. Consequently, these findings were in accordance with those of the preceding in vitro study, in which GB9 showed the greatest stimulatory effect on osteoblast differentiation in vitro. Since the cell adhesion and intracellular signaling events which lead to this stimulatory effect on osteogenesis are not fully understood, we then elucidated the mechanisms by which these bioactive bone substitutes stimulate the intracellular signalling pathways, which regulate osteoblast differentiation and cell survival. This included investigating: (1) solution mediated surface transformations, (2) serum protein adsorption events, (3) integrin-mediated cell adhesion mechanisms, and (4) intracellular signalling mechanisms. Furthermore, we then also correlated the findings from the preclinical in vivo animal studies with in vivo data from clinical studies, in which the effect of various calcium phosphate particulate bone grafting materials with varying porosity on bone formation and on osteogenic marker expression in biopsies sampled six months after sinus floor augmentation was studied, thereby rendering valuable insight in the performance of these materials in the human case as well as establishing a clinical study model for controlled clinical studies, which are required for taking novel bone grafting materials to the clinical area in an evidence-based fashion. This is in addition to confirming the adequacy of the applied animal model by correlating the in vivo animal findings to those obtained from human biopsies. Collectively, the gain of knowledge is being used to develop strategies for optimizing these bone grafting materials for a range of clinical applications so as to achieve an optimum stimulatory effect on osteogenesis. Consequently, current research efforts include studying injectable as well as mouldable resorbable calcium-alkali-phosphate-based bone substitute cements and three-dimensional calcium-alkali-phosphate-based scaffolds for bone tissue engineering purposes. This is in addition to efforts towards personalized medicine that is identifying age-, gender- and hormone status related parameters in 100 bone regeneration patients (after sinus floor augmentation with calcium phosphate bone grafting materials) which can provide powerful predictive tools toward the therapeutic outcome in a given patient thereby facilitating tailoring individual treatment regimens with respect to bone augmentation for individual patients.


2018 ◽  
Vol 44 (1) ◽  
pp. 62-69 ◽  
Author(s):  
Jonas Lorenz ◽  
Tadas Korzinskas ◽  
Poju Chia ◽  
Sarah Al Maawi ◽  
Katrin Eichler ◽  
...  

The present prospective randomized split-mouth trial reports on the 3-year clinical and radiological follow-up investigation of implants placed 7 months after sinus augmentation with 2 different bone substitute materials. The aim of the study was to complete the histologic observation of cellular reactions by analyses of the implants and the volumetric changes of the augmented bone substitute materials. A sinus augmentation split-mouth trial was performed in 14 patients with the synthetic bone substitute material Nanobone (NB) and the xenogeneic Bio-Oss (BO). Changes in volume and density of the augmented biomaterials were investigated by analysis of computed tomography scans, taken immediately after augmentation and after 7 months. Clinical implant parameters were assessed after 3 years of loading. Both bone substitute materials underwent nonsignificant volume reduction and significant increase in bone density over an integration period of 7 months. No significant differences concerning volume and bone density were observed between the groups. Three years after loading, 51 of 53 implants were in situ with no peri-implant infections, and only a few soft-tissue variations were present. The present prospective randomized study showed that no differences could be observed clinically and radiologically. Accordingly, it seems that both biomaterials, independent of their physicochemical composition, enable clinical success and long-time stability for dental implants. Interestingly, the histological results showed distinct differences in cellular reactions: While the xenogeneic BO induced a mild tissue reaction with only few multinucleated giant cells and comparably low vascularization, the synthetic NB induced a multinucleated giant cell-triggered tissue reaction with an increase of vascularization. Thus, the present study showed that a combination analysis—histological, clinical, and radiological—is necessary for a detailed assessment of a biomaterial's quality for clinical application.


2020 ◽  
Vol 142 ◽  
pp. 55-61
Author(s):  
WT Li ◽  
YL Chiang ◽  
TY Chen ◽  
CL Lai

Eurasian otters Lutra lutra are listed as Near Threatened on the IUCN Red List and are imperiled by habitat loss, water pollution, and poaching. Harassment and attacks by stray animals are also recognized threats to the health of wild Eurasian otters. Pulmonary hair embolism is a possible complication in animals with deep traumatic injury, but to date no cases have been reported in wildlife. A free-ranging, adult male Eurasian otter was rescued due to severe emaciation and multiple bite wounds. The otter died 3 d after rescue and was necropsied. Grossly, a 1.5 × 1.5 × 1.5 cm firm nodule was observed in the left cranial lung lobe. Histologically, a fragment of hair shaft surrounded by multinucleated foreign body giant cells was observed in a medium-sized vein, and extensive eosinophilic infiltration was noted in the adjacent vascular wall and lung parenchyma. Based on the gross and histological findings, the pulmonary lesion was consistent with eosinophilic pneumonia and vasculitis induced by hair embolism. The presence of well-formed multinucleated foreign body giant cells and eosinophils may imply a late stage of foreign body reaction, and thus the presumptive source of hair embolism is an animal bite. This is the first report of pulmonary hair embolism associated with animal bite in a rescued free-ranging Eurasian otter.


2017 ◽  
Vol 1 (4) ◽  
Author(s):  
Andrius Geguzis ◽  
Inesa Astramskaite ◽  
Dovile Gabseviciute

Sign in / Sign up

Export Citation Format

Share Document