Determination of tacrolimus crystalline fraction in the commercial immediate release amorphous solid dispersion products by a standardized X-ray powder diffraction method with chemometrics

2014 ◽  
Vol 475 (1-2) ◽  
pp. 462-470 ◽  
Author(s):  
Ziyaur Rahman ◽  
Akhtar Siddiqui ◽  
Srikant Bykadi ◽  
Mansoor A. Khan
Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4492
Author(s):  
Eric Ofosu Kissi ◽  
Robin Nilsson ◽  
Liebert Parreiras Nogueira ◽  
Anette Larsson ◽  
Ingunn Tho

Fused deposition modelling-based 3D printing of pharmaceutical products is facing challenges like brittleness and printability of the drug-loaded hot-melt extruded filament feedstock and stabilization of the solid-state form of the drug in the final product. The aim of this study was to investigate the influence of the drug load on printability and physical stability. The poor glass former naproxen (NAP) was hot-melt extruded with Kollidon® VA 64 at 10–30% w/w drug load. The extrudates (filaments) were characterised using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and thermogravimetric analysis (TGA). It was confirmed that an amorphous solid dispersion was formed. A temperature profile was developed based on the results from TGA, DSC, and DMA and temperatures used for 3D printing were selected from the profile. The 3D-printed tablets were characterised using DSC, X-ray computer microtomography (XµCT), and X-ray powder diffraction (XRPD). From the DSC and XRPD analysis, it was found that the drug in the 3D-printed tablets (20 and 30% NAP) was amorphous and remained amorphous after 23 weeks of storage (room temperature (RT), 37% relative humidity (RH)). This shows that adjusting the drug ratio can modulate the brittleness and improve printability without compromising the physical stability of the amorphous solid dispersion.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1560-C1560
Author(s):  
Fumiko Kimura ◽  
Wataru Oshima ◽  
Hiroko Matsumoto ◽  
Hidehiro Uekusa ◽  
Kazuaki Aburaya ◽  
...  

In pharmaceutical sciences, the crystal structure is of primary importance because it influences drug efficacy. Due to difficulties of growing a large single crystal suitable for the single crystal X-ray diffraction analysis, powder diffraction method is widely used. In powder method, two-dimensional diffraction information is projected onto one dimension, which impairs the accuracy of the resulting crystal structure. To overcome this problem, we recently proposed a novel method of fabricating a magnetically oriented microcrystal array (MOMA), a composite in which microcrystals are aligned three-dimensionally in a polymer matrix. The X-ray diffraction of the MOMA is equivalent to that of the corresponding large single crystal, enabling the determination of the crystal lattice parameters and crystal structure of the embedded microcrytals.[1-3] Because we make use of the diamagnetic anisotropy of crystal, those crystals that exhibit small magnetic anisotropy do not take sufficient three-dimensional alignment. However, even for these crystals that only align uniaxially, the determination of the crystal lattice parameters can be easily made compared with the determination by powder diffraction pattern. Once these parameters are determined, crystal structure can be determined by X-ray powder diffraction method. In this paper, we demonstrate possibility of the MOMA method to assist the structure analysis through X-ray powder and single crystal diffraction methods. We applied the MOMA method to various microcrystalline powders including L-alanine, 1,3,5-triphenyl benzene, and cellobiose. The obtained MOMAs exhibited well-resolved diffraction spots, and we succeeded in determination of the crystal lattice parameters and crystal structure analysis.


2007 ◽  
Vol 22 (3) ◽  
pp. 241-245 ◽  
Author(s):  
B. Włodarczyk-Gajda ◽  
A. Rafalska-Łasocha ◽  
W. Łasocha

A novel synthesis method of fibrillar trimolybdates with the use of Ag2Mo3O10∙2H2O as a precursor has been used successfully to synthesize methylammonium trimolybdate, (CH3NH3)2Mo3O10∙H2O. The crystal structure of this compound was determined by X-ray powder diffraction method and refined by the Rietveld method. The compound is orthorhombic, space group Pnma (62), with a=11.241(3), b=7.585(1), and c=15.516(4) Å. The redetermined crystal structure of the precursor and the structure of the title compound are compared and discussed.


Sign in / Sign up

Export Citation Format

Share Document