Determination of Molar Ratio in AB1−x Rocksalt-type Compounds by X-ray Powder Diffraction Method. Application to TiC1−x

1986 ◽  
Vol 21 (6) ◽  
pp. 735-740 ◽  
Author(s):  
P. Čapková ◽  
P. Karen ◽  
L. Dobiášová
2014 ◽  
Vol 70 (a1) ◽  
pp. C1560-C1560
Author(s):  
Fumiko Kimura ◽  
Wataru Oshima ◽  
Hiroko Matsumoto ◽  
Hidehiro Uekusa ◽  
Kazuaki Aburaya ◽  
...  

In pharmaceutical sciences, the crystal structure is of primary importance because it influences drug efficacy. Due to difficulties of growing a large single crystal suitable for the single crystal X-ray diffraction analysis, powder diffraction method is widely used. In powder method, two-dimensional diffraction information is projected onto one dimension, which impairs the accuracy of the resulting crystal structure. To overcome this problem, we recently proposed a novel method of fabricating a magnetically oriented microcrystal array (MOMA), a composite in which microcrystals are aligned three-dimensionally in a polymer matrix. The X-ray diffraction of the MOMA is equivalent to that of the corresponding large single crystal, enabling the determination of the crystal lattice parameters and crystal structure of the embedded microcrytals.[1-3] Because we make use of the diamagnetic anisotropy of crystal, those crystals that exhibit small magnetic anisotropy do not take sufficient three-dimensional alignment. However, even for these crystals that only align uniaxially, the determination of the crystal lattice parameters can be easily made compared with the determination by powder diffraction pattern. Once these parameters are determined, crystal structure can be determined by X-ray powder diffraction method. In this paper, we demonstrate possibility of the MOMA method to assist the structure analysis through X-ray powder and single crystal diffraction methods. We applied the MOMA method to various microcrystalline powders including L-alanine, 1,3,5-triphenyl benzene, and cellobiose. The obtained MOMAs exhibited well-resolved diffraction spots, and we succeeded in determination of the crystal lattice parameters and crystal structure analysis.


2007 ◽  
Vol 22 (3) ◽  
pp. 241-245 ◽  
Author(s):  
B. Włodarczyk-Gajda ◽  
A. Rafalska-Łasocha ◽  
W. Łasocha

A novel synthesis method of fibrillar trimolybdates with the use of Ag2Mo3O10∙2H2O as a precursor has been used successfully to synthesize methylammonium trimolybdate, (CH3NH3)2Mo3O10∙H2O. The crystal structure of this compound was determined by X-ray powder diffraction method and refined by the Rietveld method. The compound is orthorhombic, space group Pnma (62), with a=11.241(3), b=7.585(1), and c=15.516(4) Å. The redetermined crystal structure of the precursor and the structure of the title compound are compared and discussed.


2002 ◽  
Vol 35 (5) ◽  
pp. 600-605 ◽  
Author(s):  
Eva T. Gomez ◽  
Teófilo Sanfeliu ◽  
Jordi Rius

In 1987, Rius, Plana & Palanques [J. Appl. Cryst.(1987),20, 457–460] devised an X-ray powder diffraction method based on the `least-squares' determination of calibration constants using only the diffracted intensities and the calculated absorption coefficients of the components. This method was developed for `infinitely thick' samples, a condition which is seldom met by airborne particulates because of the small amount of material normally available. Since the analysis of such samples may become one of the principal applications of the method, this condition represents a serious limitation. The simplest way to overcome this limitation is by correcting the measured intensities. This can be done either by direct measurement of the sample transmission, or alternatively, by using refined transmission values. In the latter case no experimental values are necessary. With the help of some test calculations, the viability of both possibilities has been explored.


Author(s):  
Milan Geršl ◽  
Jan Mareček ◽  
Dalibor Matýsek ◽  
Tomáš Vítěz ◽  
Pavol Findura

In the field of energetics and renewable energy sources, fertilizers, remediation and recultivation, waste management and other, biomass is widely studied and used these days. Determining the mineral phases present in the biomass is essential for determining the binding of chemical elements from which further derives its availability or unavailability for soil processes, plant nutrition or behaviour in technological processes. Semiquantitative phase analyses were carried out by the X-ray powder diffraction method (XRD).


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2706
Author(s):  
Katarzyna Siwińska-Ciesielczyk ◽  
Beata Kurc ◽  
Dominika Rymarowicz ◽  
Adam Kubiak ◽  
Adam Piasecki ◽  
...  

Hydrothermal crystallization was used to synthesize an advanced hybrid system containing titania and molybdenum disulfide (with a TiO2:MoS2 molar ratio of 1:1). The way in which the conditions of hydrothermal treatment (180 and 200 °C) and thermal treatment (500 °C) affect the physicochemical properties of the products was determined. A physicochemical analysis of the fabricated materials included the determination of the microstructure and morphology (scanning and transmission electron microscopy—SEM and TEM), crystalline structure (X-ray diffraction method—XRD), chemical surface composition (energy dispersive X-ray spectroscopy—EDS) and parameters of the porous structure (low-temperature N2 sorption), as well as the chemical surface concentration (X-ray photoelectron spectroscop—XPS). It is well known that lithium-ion batteries (LIBs) represent a renewable energy source and a type of energy storage device. The increased demand for energy means that new materials with higher energy and power densities continue to be the subject of investigation. The objective of this research was to obtain a new electrode (anode) component characterized by high work efficiency and good electrochemical properties. The synthesized TiO2-MoS2 material exhibited much better electrochemical stability than pure MoS2 (commercial), but with a specific capacity ca. 630 mAh/g at a current density of 100 mA/g.


ChemInform ◽  
2010 ◽  
Vol 24 (2) ◽  
pp. no-no
Author(s):  
R. E. MORRIS ◽  
W. T. A. HARRISON ◽  
J. M. NICOL ◽  
A. P. WILKINSON ◽  
A. K. CHEETHAM

Sign in / Sign up

Export Citation Format

Share Document