Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications

2018 ◽  
Vol 535 (1-2) ◽  
pp. 1-17 ◽  
Author(s):  
M. Sala ◽  
R. Diab ◽  
A. Elaissari ◽  
H. Fessi
2012 ◽  
Vol 57 (SI-1 Track-S) ◽  
Author(s):  
K. Sternberg ◽  
S. Petersen ◽  
N. Grabow ◽  
F. Luderer ◽  
A. Bohl ◽  
...  

2020 ◽  
Vol 10 (6) ◽  
pp. 748-765
Author(s):  
Alaa A.A. Aljabali ◽  
Mohammad A. Obeid

Background:: Surface modification of nanoparticles with targeting moieties can be achieved through bioconjugation chemistries to impart new Functionalities. Various polymeric nanoparticles have been used for the formulation of nanoparticles such as naturally-occurring protein cages, virus-like particles, polymeric saccharides, and liposomes. These polymers have been proven to be biocompatible, side effects free and degradable with no toxicity. Objectives:: This paper reviews available literature on the nanoparticles pharmaceutical and medical applications. The review highlights and updates the customized solutions for selective drug delivery systems that allow high-affinity binding between nanoparticles and the target receptors. Methods:: Bibliographic databases and web-search engines were used to retrieve studies that assessed the usability of nanoparticles in the pharmaceutical and medical fields. Data were extracted on each system in vivo and in vitro applications, its advantages and disadvantages, and its ability to be chemically and genetically modified to impart new functionalities. Finally, a comparison between naturally occurring and their synthetic counterparts was carried out. Results:: The results showed that nanoparticles-based systems could have promising applications in diagnostics, cell labeling, contrast agents (Magnetic Resonance Imaging and Computed Tomography), antimicrobial agents, and as drug delivery systems. However, precautions should be taken to avoid or minimize toxic effect or incompatibility of nanoparticles-based systems with the biological systems in case of pharmaceutical or medical applications. Conclusion:: This review presented a summary of recent developments in the field of pharmaceutical nanotechnology and highlighted the challenges and the merits that some of the nanoparticles- based systems both in vivo and in vitro systems.


Author(s):  
James E. Mark ◽  
Dale W. Schaefer ◽  
Gui Lin

Numerous medical applications have been developed for siloxane polymers. Prostheses, artificial organs, objects for facial reconstruction, vitreous substitutes in the eyes, tubing and catheters, for example, take advantage of the inertness, stability, and pliability of polysiloxanes. Artificial skin, contact lenses, and drug delivery systems utilize their high permeability as well. Such biomedical applications have led to extensive biocompatability studies, particularly on the interactions of polysiloxanes with proteins. There has been considerable interest in modifying these materials to improve their suitability for biomedical applications in general. Advances seem to be coming particularly rapidly in the area of high-tech drug-delivery systems. Figure 10.1 shows the range of diameters of Silastic medical-grade siloxane tubing available for medical applications. The smallest tubing has an internal diameter of only 0.012 inches (0.031 cm) and an outer diameter of only 0.025 inches (0.064 cm). Such materials must first be extensively tested (sensitization of skin, tissue cell culture compatibility, implant compatibility). There has been considerable controversy, for example, over the safety of using polysiloxanes in breast implants. The major concern was “bleeding” of low molecular polysiloxanes out of the gels into the chest cavity, followed by transport to other parts of the body. The extent to which “bleeding” occurred and its possible systemic effects on the body were argued vigorously in the media and in the courts, and led to restrictions on the use of polysiloxanes. In the case of controlled drug-delivery systems, the goal is to have the drug released at a relatively constant rate (zero-order kinetics) at a concentration within the therapeutic range. It is obviously important to minimize the amount of time the concentration is in the low, ineffective range, and to eliminate completely the time it is in the high, toxic range (figure 10.2). Figure 10.3 illustrates the use of polysiloxanes in such drug-delivery systems. The goal mentioned is approached by placing the drug inside a siloxane elastomeric capsule, which is then implanted in an appropriate location in the body. The drug within the capsule can be in the free state, in a fluid suspension, or mixed or dissolved into an elastomeric matrix.


2008 ◽  
Vol 2 (1) ◽  
pp. 1-9 ◽  
Author(s):  
María Vallet-Regí ◽  
Francisco Balas

The two main applications of silica-based materials in medicine and biotechnology,i.e.for bone-repairing devices and for drug delivery systems, are presented and discussed. The influence of the structure and chemical composition in the final characteristics and properties of every silica-based material is also shown as a function of the both applications presented. The adequate combination of the synthesis techniques, template systems and additives leads to the development of materials that merge the bioactive behavior with the drug carrier ability. These systems could be excellent candidates as materials for the development of devices for tissue engineering.


2021 ◽  
Author(s):  
Ali Pourjavadi ◽  
Rozhin Heydarpour ◽  
Zahra Mazaheri Tehrani

This review highlights the medical applications of multi-stimuli-responsive hydrogels as self-healing hydrogels, antibacterial materials and drug-delivery systems.


Author(s):  
María Guadalupe Nava-Arzaluz ◽  
Elizabeth Piñón-Segundo ◽  
Adriana Ganem-Rondero

Planta Medica ◽  
2018 ◽  
Vol 84 (09/10) ◽  
pp. 736-742 ◽  
Author(s):  
Clizia Guccione ◽  
Maria Bergonzi ◽  
Khaled Awada ◽  
Vieri Piazzini ◽  
Anna Bilia

AbstractThe aim of this study was the development and characterization of lipid nanocarriers using food grade components for oral delivery of Serenoa repens CO2 extract, namely microemulsions (MEs) and self-microemulsifying drug delivery systems (SMEDDSs) to improve the oral absorption. A commercial blend (CB) containing 320 of S. repens CO2 extract plus the aqueous soluble extracts of nettle root and pineapple stem was formulated in two MEs and two SMEDDSs. The optimized ME loaded with the CB (CBM2) had a very low content of water (only 17.3%). The drug delivery systems were characterized by dynamic light scattering, transmission electron microscopy, and high-performance liquid chromatography (HPLC) with a diode-array detector analyses in order to evaluate the size, the homogeneity, the morphology, and the encapsulation efficiency. β-carotene was selected as marker for the quantitative HPLC analysis. Additionally, physical and chemical stabilities were acceptable during 3 wk at 4 °C. Stability of these nanocarriers in simulated stomach and intestinal conditions was proved. Finally, the improvement of oral absorption of S. repens was studied in vitro using parallel artificial membrane permeability assay. An enhancement of oral permeation was found in both CBM2 and CBS2 nanoformulations comparing with the CB and S. repens CO2 extract. The best performance was obtained by the CBM2 nanoformulation (~ 17%) predicting a 30 – 70% passive oral human absorption in vivo.


Author(s):  
Gokhan Demirci ◽  
Malwina Niedzwiedz ◽  
Nina Kantor-Malujdy ◽  
Miroslawa El Fray

Novel bio-inspired materials have gained recently great attention, especially in medical applications. Applying sophisticated design and engineering methods, various polymer-polymer hybrid systems with outstanding performance have been developed in last decades. Hybrid systems composed of bioelastomers and hydrogels are very attractive due to their high biocompatibility and elastic nature for advanced biomaterials used in various medical applications such as drug delivery systems and scaffolds for tissue engineering. Herein, we describe the advances in current state-of-the-art design, properties and applications of polymer-polymer hybrid systems in medical applications. Bio-inspired functionalities, including bioadhesiveness, injectability, antibacterial properties and degradability applicable to advanced drug delivery systems and medical devices will be discussed in a context of future efforts towards development of bioinspired materials.


Sign in / Sign up

Export Citation Format

Share Document