Multi-walled carbon nanotube-incorporating electrospun composite fibrous mats for controlled drug release profile

2019 ◽  
Vol 568 ◽  
pp. 118513 ◽  
Author(s):  
Y. Emre Bulbul ◽  
Ş. Melda Eskitoros-Togay ◽  
Funda Demirtas-Korkmaz ◽  
Nursel Dilsiz
2018 ◽  
Vol 18 (3) ◽  
pp. 438-449 ◽  
Author(s):  
Ziaeddin Abed ◽  
Samideh Khoei ◽  
Behafarid Ghalandari ◽  
Jaber Beik ◽  
Ali Shakeri-Zadeh ◽  
...  

Objective: To study the effects of ultrasound irradiation on the release profile of 5-fluorouracil (5-Fu) loaded magnetic poly lactic co-glycolic acid (PLGA) nanocapsules. Also, the controlled drug-release behaviour of the nanocapsules was mathematically investigated. Methods: The nanocapsules were synthesized, dispersed in phosphate buffered saline (PBS), transferred to a dialysis bag, and finally, irradiated by various ultrasound parameters (1 or 3MHz; 0.3-1W/cm2; 5-10 minutes). The release profile of the irradiated nanocapsules was recorded for 14 days. To find the in vitro drug release mechanism in the absence and presence of various intensities of ultrasound, the obtained data were fitted in various kinetic models for drug release. Results: The results demonstrated that the ultrasound speeded up the rate of drug release from the nanocapsules. The mathematical analysis illustrated that when the ultrasound intensity is increased, the probability of controlled release behaviour of the nanocapsules is raised. We found that drug release from the irradiated nanocapsules follows an erosion-controlled mechanism with the decrease in the velocity of diffusion. Conclusion: In conclusion, to attain a controlled drug-delivery strategy in the area of cancer therapy, the drug release profile of the nano-carriers may be well-controlled by ultrasound.


2011 ◽  
Vol 47 (4) ◽  
pp. 833-844 ◽  
Author(s):  
Kajal Ghosal ◽  
Sarbani Dey Ray

This study aimed to obtain site-specific and controlled drug release particulate systems. Some particulates were prepared using different concentrations of sodium alginate (Na-Alg) alone and others were formulated using different proportions of Na-Alg with hydroxypropyl methylcellulose (HPMC) stearoxy ether (60M viscosity grade), a hydrophobic form of conventional HPMC, using diclofenac potassium (DP) by ion-exchange methods. Beads were characterized by encapsulation efficiency, release profile, swelling, and erosion rate. The suitability of common empirical (zero-order, first-order and Higuchi) and semi-empirical (Ritger-Peppas and Peppas-Sahlin) models was studied to describe the drug release profile. The Weibull model was also studied. Models were tested by non-linear least-square curve fitting. A general purpose mathematical software (MATLAB) was used as an analysis tool. In addition, instead of the widely used linear fitting of log-transformed data, direct fitting was used to avoid any sort of truncation or transformation errors. The release kinetics of the beads indicated a purely relaxation-controlled delivery, referred to as case II transport. Weibull distribution showed a close fit. The release of DP from Na-Alg particulates was complete in 5-6 hours, whereas from Na-Alg hydrophobic HPMC particulate systems, release was sustained up to 10 hours. Hydrophobic HPMC with Na-Alg is an excellent matrix to formulate site-specific and controlled drug release particulate systems.


2019 ◽  
Vol 9 (01) ◽  
pp. 58-64
Author(s):  
Senthilnathan B ◽  
Billy Graham R ◽  
Chaarmila Sherin C ◽  
Vivekanandan K ◽  
Bhavya E

Objective: Drug targeting is the capacity of the dosage form. In which the therapeutic agent acts specifically to desired site of action in the non-targeted tissue with the help of Nano particles is called as the drug targeting. IMATINIB is a used to treat cancer by chemo therapy. Cancers like chronic myeloid leukemia cancer (CML) and acute lymphoblastic leukemia cancer (ALL) and other specific types of gastrointestinal stromal cell tumor (GIST) systemic mast cell disease and Bone marrow failure disorder. It is administered by oral root. For ATP, Tyrosine kinase is act as a binding site. Methodology: The drug IMATINIB is loaded in the polymer chitosan, poly-(D) glucosamine is a bio compactible, bio degradable, nontoxic, antimicrobial and soluble in solvents. This preparation is done by emulsion-droplet coalescence method. Content of the Drug, Size of the particle and Zeta potential, Encapsulation efficiency and Drug release testing are described for this formulation in this study. Results: The Imatinib Nano particles were formulated and evaluated for its invitro drug release profile. Based on the invitro drug release profile of Imatinib nano particles formulation (INP1 – INP5) formulation INP3 was selected as the best formulation in which the particle size was 285.9nm. The invitro % drug release of INP3 formulation was 99.76 ± 0.82 and it was found to be the suitable formulation to manage the cancer. Conclusion: Hence it is concluded that the newly formulated controlled release nanoparticle drug delivery system of Imatinib may be idol and effective by allowing the drug to release continuously for 24 hrs.


Bio-Research ◽  
2020 ◽  
Vol 18 (1) ◽  
Author(s):  
BB Mohammed ◽  
EJ John ◽  
NK Ajuji

Tablets at present, remain the most preferred oral dosage form because of many advantages they offer to formulators as well as physicians and patients. The objective of this work was to determine the effect of co-processing on the disintegration and drug-release profile of ibuprofen tablets prepared from a co-processed excipient. The co-processed excipient (CE) containing lactose, gelatin and mucin in the ratio 90:9:1 was prepared using co-fusion. The excipient was evaluated for its physicochemical properties and then used to formulate tablets with the addition of a disintegrant by direct compression. The tablets were evaluated for their tablet properties and compared with tablets prepared with cellactose- 80® (CEL) and spray dried lactose® (SDL) and a physical mix (PM) of the co-processed ingredient. Results from evaluation of CE showed that flow rate, angle of repose, Carr’s index and Hausner’s ratio were 5.28 g/sec, 20.30o, 23.75 % and 1.31, respectively. Tablets prepared with CE had friability (0%), crushing strength (5.25) KgF, disintegration time (3 mins) and T50% (2 mins). For CEL, friability (0.4 %), crushing strength (7.25) KgF, disintegration time (1 min) and T50% (2 mins); SDL, friability (1.57 %), crushing strength (7.50) KgF, disintegration time (4 mins) and T50% (2 mins) and PM, friability (2.38 %), crushing strength (5.00) KgF, disintegration time (1 min) and T50% (2 mins). In conclusion, the disintegration time and drug release profile for CE was not superior but compared favorably with CEL, SDL and PM.  


2010 ◽  
Vol 394 (1-2) ◽  
pp. 92-98 ◽  
Author(s):  
Tofeeq Ur-Rehman ◽  
Staffan Tavelin ◽  
Gerhard Gröbner

INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (07) ◽  
pp. 52-57

The aim of this research was to develop mucoadhesive buccal patches of nicergoline by using Factorial Design of Experiment, in order to provide a sustained release of drug into the systemic circulation. A 33 factorial experimental design was employed for optimization and to study the effect of formulation variables on responses R1 (% swelling index), R2 (% drug content), R3 (mucoadhesion time) and R4 (mucoadhesion strength). In vitro drug release study was performed on the optimized formulations. All the prepared formulations had good mechanical strength, mucoadhesion strength, neutral surface pH and drug content up to 98.17%. In vitro drug release study revealed that F-5 formulation showed promising sustained drug release profile (98.21%) for over 8 h and could be a potential substitute for marketed conventional formulations. The developed formulation (F5) was found to be optimized with considerably good stability and extended drug release profile.


Sign in / Sign up

Export Citation Format

Share Document