scholarly journals Hot melt extruded zein for controlled delivery of diclofenac sodium: Effect of drug loading and medium composition

2020 ◽  
Vol 585 ◽  
pp. 119503
Author(s):  
Lorina Bisharat ◽  
Hatim S. Alkhatib ◽  
Amer Abdelhafez ◽  
Aya Barqawi ◽  
Ahmad Aljaberi ◽  
...  
2021 ◽  
Vol 13 (3) ◽  
pp. 3679-3693
Author(s):  
Xin Sun ◽  
Guihua He ◽  
Chuxiao Xiong ◽  
Chenyuan Wang ◽  
Xiang Lian ◽  
...  

Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 110
Author(s):  
Muhammad Suhail ◽  
Chih-Wun Fang ◽  
Arshad Khan ◽  
Muhammad Usman Minhas ◽  
Pao-Chu Wu

The purpose of the current investigation was to develop chondroitin sulfate/carbopol-co-poly(acrylic acid) (CS/CBP-co-PAA) hydrogels for controlled delivery of diclofenac sodium (DS). Different concentrations of polymers chondroitin sulfate (CS), carbopol 934 (CBP), and monomer acrylic acid (AA) were cross-linked by ethylene glycol dimethylacrylate (EGDMA) in the presence of ammonium peroxodisulfate (APS) (initiator). The fabricated hydrogels were characterized for further experiments. Characterizations such as Scanning electron microscopy (SEM), Thermogravimetric analysis (TGA), Differential scanning calorimetry (DSC), Powder X-ray diffractometry (PXRD), and Fourier transform infrared spectroscopy (FTIR) were conducted to understand the surface morphology, thermodynamic stability, crystallinity of the drug, ingredients, and developed hydrogels. The swelling and drug release studies were conducted at two different pH mediums (pH 1.2 and 7.4), and pH-dependent swelling and drug release was shown due to the presence of functional groups of both polymers and monomers; hence, greater swelling and drug release was observed at the higher pH (pH 7.4). The percent drug release of the developed system and commercially available product cataflam was compared and high controlled release of the drug from the developed system was observed at both low and high pH. The mechanism of drug release from the hydrogels followed Korsmeyer–Peppas model. Conclusively, the current research work demonstrated that the prepared hydrogel could be considered as a suitable candidate for controlled delivery of diclofenac sodium.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2950
Author(s):  
Ioannis Koutsamanis ◽  
Martin Spoerk ◽  
Florian Arbeiter ◽  
Simone Eder ◽  
Eva Roblegg

Implantable drug delivery systems (IDDSs) offer good patient compliance and allow the controlled delivery of drugs over prolonged times. However, their application is limited due to the scarce material selection and the limited technological possibilities to achieve extended drug release. Porous structures are an alternative strategy that can overcome these shortcomings. The present work focuses on the development of porous IDDS based on hydrophilic (HPL) and hydrophobic (HPB) polyurethanes and chemical pore formers (PFs) manufactured by hot-melt extrusion. Different PF types and concentrations were investigated to gain a sound understanding in terms of extrudate density, porosity, compressive behavior, pore morphology and liquid uptake. Based on the rheological analyses, a stable extrusion process guaranteed porosities of up to 40% using NaHCO3 as PF. The average pore diameter was between 140 and 600 µm and was indirectly proportional to the concentration of PF. The liquid uptake of HPB was determined by the open pores, while for HPL both open and closed pores influenced the uptake. In summary, through the rational selection of the polymer type, the PF type and concentration, porous carrier systems can be produced continuously via extrusion, whose properties can be adapted to the respective application site.


2013 ◽  
Vol 52 (8) ◽  
pp. 795-805 ◽  
Author(s):  
Shiv Sankar Bhattacharya ◽  
Seema Shukla ◽  
Subham Banerjee ◽  
Purojit Chowdhury ◽  
Prithviraj Chakraborty ◽  
...  

2013 ◽  
Vol 19 (5) ◽  
pp. 531-538 ◽  
Author(s):  
K. Vithani ◽  
Y. Cuppok ◽  
S. Mostafa ◽  
I. J. Slipper ◽  
M. J. Snowden ◽  
...  

2019 ◽  
Vol 69 (12) ◽  
pp. 3400-3405
Author(s):  
Mariana Mateescu ◽  
Sanda Maria Doncea ◽  
Iuliana Raut ◽  
Cristina Lavinia Nistor ◽  
Ioneta Codrina Bujanca

The hydroxyapatite (HA) nano and microparticles were synthesized by wet-chemical precipitation in order to use them as drug carriers for biomedical applications. Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS) and Fourier Transform Infrared Spectroscopy (FTIR) were performed to assess their size, external morphology and chemical composition. The properties of HA particles as drug carriers for antibiotics delivery were evaluated with doxycycline and chloramphenicol. The amount of drug loading and release was determined by UV-Visible spectrophotometry. The antibacterial properties of loaded HA particles were evaluated using gram-positive Bacillus subtilis bacteria and gram-negative Pseudomonas aeruginosa bacteria. The synthesized particles of HA exhibit a high adsorption capacity (around 99%) and good controlled release properties for doxycycline. The adsorption of chloramphenicol on HA was extremely low (about 2%). According to the results, the compatibility between the drug and substrate is an important factor in the absorption process, and the hydroxyapatite is a very promising carrier for controlled release of antibiotics.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1607
Author(s):  
Kasitpong Thanawuth ◽  
Lalinthip Sutthapitaksakul ◽  
Srisuda Konthong ◽  
Supakij Suttiruengwong ◽  
Kampanart Huanbutta ◽  
...  

The purpose of this study was to investigate the impact of the drug loading method on drug release from 3D-printed tablets. Filaments comprising a poorly water-soluble model drug, indomethacin (IND), and a polymer, polyvinyl alcohol (PVA), were prepared by hot-melt extrusion (HME) and compared with IND-loaded filaments prepared with an impregnation (IMP) process. The 3D-printed tablets were fabricated using a fused deposition modeling 3D printer. The filaments and 3D printed tablets were evaluated for their physicochemical properties, swelling and matrix erosion behaviors, drug content, and drug release. Physicochemical investigations revealed no drug–excipient interaction or degradation. IND-loaded PVA filaments produced by IMP had a low drug content and a rapid drug release. Filaments produced by HME with a lower drug content released the drug faster than those with a higher drug content. The drug content and drug release of 3D-printed tablets containing IND were similar to those of the filament results. Particularly, drug release was faster in 3D-printed tablets produced with filaments with lower drug content (both by IMP and HME). The drug release of 3D-printed tablets produced from HME filaments with higher drug content was extended to 24 h due to a swelling-erosion process. This study confirmed that the drug loading method has a substantial influence on drug content, which in turn has a significant effect on drug release. The results suggest that increasing the drug content in filaments might delay drug release from 3D-printed tablets, which may be used for developing dosage forms suited for personalized medicine.


Sign in / Sign up

Export Citation Format

Share Document