Current applications of drug delivery nanosystems associated with antimicrobial photodynamic therapy for oral infections

2021 ◽  
Vol 592 ◽  
pp. 120078
Author(s):  
Amanda Letícia Polli Silvestre ◽  
Leonardo Delello Di Filippo ◽  
João Felipe Besegato ◽  
Sarah Raquel de Annunzio ◽  
Bruna Almeida Furquim de Camargo ◽  
...  
2017 ◽  
Vol 376 ◽  
pp. 54-65 ◽  
Author(s):  
Monica Laura Dascalu (Rusu) ◽  
Codruta Sarosi ◽  
Marioara Moldovan ◽  
Mândra Eugenia Badea

Photodynamic therapy (PDT) also known as Phototherapy or Photo chemotherapy involves the use of a photoactive dye (photosensitive) which is activated by exposure to light of a certain wavelength in the presence of oxygen. Dentists have to deal regularly with oral infections which untreated may cause systemic infections. Oral infections such as caries, periodontal infections and infections of the oral mucosa are available lighting so photodynamic therapy is particularly suitable for oral diseases [1,2]. Antimicrobial chemical treatment is nowadays widely used in the prophylaxis and treatment of inflammation-induced plaque with the risk of resistance development. The use of photodynamic therapy as a therapeutic approach can eliminate this risk, however. Studies in the literature show that both Gram-positive bacteria and Gram-negative bacteria are susceptible to the treatment. Among the advantages of using this method is counted rapid elimination of bacteria, minimal chances of developing bacterial resistance and safety in terms of host tissue and existing normal microflora in the oral cavity [3]. Antimicrobial photodynamic therapy (aPDT) by photochemical reaction uses light at a specific wavelength to activate a nontoxic photosensitizer (PS) in the presence of oxygen to produce cytotoxic products. There are different PSs used in dentistry including methylene blue (MB), toluidine blue O (TBO), indocyanine green (ICG) and curcumin [4].


Author(s):  
Pier Poli ◽  
Francisley Avila Souza ◽  
Mattia Manfredini ◽  
Carlo Maiorana ◽  
Mario Beretta

Not required for Clinical case letters according to the authors' guidelines.


Author(s):  
Desmond I. J. Morrow ◽  
Martin J. Garland ◽  
Paul A. McCarron ◽  
A. David Woolfson ◽  
Ryan F. Donnelly

2020 ◽  
Author(s):  
busenur Aslanoglu ◽  
Ilya Yakavets ◽  
Vladimir Zorin ◽  
Henri-Pierre Lassalle ◽  
Francesca Ingrosso ◽  
...  

Computational tools have been used to study the photophysical and photochemical features of photosensitizers in photodynamic therapy (PDT) –a minimally invasive, less aggressive alternative for cancer treatment. PDT is mainly based by the activation of molecular oxygen through the action of a photoexcited sensitizer (photosensitizer). Temoporfin, widely known as mTHPC, is a second-generation photosensitizer, which produces the cytotoxic singlet oxygen when irradiated with visible light and hence destroys tumor cells. However, the bioavailability of the mostly hydrophobic photosensitizer, and hence its incorporation into the cells, is fundamental to achieve the desired effect on malignant tissues by PDT. In this study, we focus on the optical properties of the temoporfin chromophore in different environments –in <i>vacuo</i>, in solution, encapsulated in drug delivery agents, namely cyclodextrin, and interacting with a lipid bilayer.


2020 ◽  
Vol 26 (36) ◽  
pp. 4551-4568
Author(s):  
Mohammad Kashif Iqubal ◽  
Sadaf Saleem ◽  
Ashif Iqubal ◽  
Aiswarya Chaudhuri ◽  
Faheem Hyder Pottoo ◽  
...  

A wound refers to the epithelial loss, accompanied by loss of muscle fibers collagen, nerves and bone instigated by surgery, trauma, frictions or by heat. Process of wound healing is a compounded activity of recovering the functional integrity of the damaged tissues. This process is mediated by various cytokines and growth factors usually liberated at the wound site. A plethora of herbal and synthetic drugs, as well as photodynamic therapy, is available to facilitate the process of wound healing. Generally, the systems used for the management of wounds tend to act through covering the ruptured site, reduce pain, inflammation, and prevent the invasion and growth of microorganisms. The available systems are, though, enough to meet these requirements, but the involvement of nanotechnology can ameliorate the performance of these protective coverings. In recent years, nano-based formulations have gained immense popularity among researchers for the wound healing process due to the enhanced benefits they offer over the conventional preparations. Hereupon, this review aims to cover the entire roadmap of wound healing, beginning from the molecular factors involved in the process, the various synthetic and herbal agents, and combination therapy available for the treatment and the current nano-based systems available for delivery through the topical route for wound healing.


Sign in / Sign up

Export Citation Format

Share Document