Nanocrystal-based 3D-printed tablets: Semi-solid extrusion using Melting solidification printing process (MESO-PP) for Oral Administration of poorly soluble drugs

Author(s):  
Lucía Lopez-Vidal ◽  
Juan Pablo Real ◽  
Daniel Andrés Real ◽  
Nahuel Camacho ◽  
Marcelo J. Kogan ◽  
...  
2019 ◽  
Vol 15 (6) ◽  
pp. 576-588 ◽  
Author(s):  
Beibei Yan ◽  
Yu Gu ◽  
Juan Zhao ◽  
Yangyang Liu ◽  
Lulu Wang ◽  
...  

: According to the drug discovery, approximately 40% of the new chemical entities show poor bioavailability due to their low aqueous solubility. In order to increase the solubility of the drugs, self-micro emulsifying drug delivery systems (SMEDDS) are considered as an ideal technology for enhancing the permeability of poorly soluble drugs in GI membranes. The SMEDDS are also generally used to enhance the oral bioavailability of the hydrophobic drugs. At present, most of the self-microemulsion drugs are liquid dosage forms, which could cause some disadvantages, such as the low bioavailability of the traditional liquid SMEDDS. Therefore, solid self-micro emulsifying drug delivery systems (S-SMEDDS) have emerged widely in recent years, which were prepared by solidifying a semi-solid or liquid self-emulsifying (SE) ingredient into a powder in order to improve stability, treatment and patient compliance. The article gives a comprehensive introduction of the study of SMEDDS which could effectively tackle the problem of the water-insoluble drug, especially the development of solidification technology of SMEDDS. Finally, the present challenges and the prospects in this field were also discussed.


2022 ◽  
pp. 93-117
Author(s):  
Subramanian Natesan ◽  
Victor Hmingthansanga ◽  
Nidhi Singh ◽  
Pallab Datta ◽  
Sivakumar Manickam ◽  
...  

Administration of drugs through the oral route is considered the simplest and most convenient way to offer greater patient compliance than other routes. Most active drugs discovered in the past and those being discovered in recent times are inadequate because of their inherent limitations in physicochemical properties such as low solubility and permeability, resulting in poor bioavailability, especially after oral administration in the form of tablet or capsule. Pharmaceutical nanoemulsion is the most promising, safer, and multimodal technique for delivering poorly soluble drugs and gaining more attention due to its characteristics such as higher solubilisation capacity, smaller size, surface charge, and site-specific drug targeting. This chapter focuses on the biological fate of nanoemulsion after oral administration and a few case studies related to the oral application of nanoemulsion in delivering poorly soluble drugs. In addition, the anatomy and physiology of the GI tract, components of nanoemulsion, and methods of preparation are addressed.


Author(s):  
Buduru Gowthami ◽  
S.V. Gopala Krishna ◽  
D. Subba Rao

Oral administration is considered as major, convenient route among all other routes of delivery, owing to several benefits. But, the poor solubility or enzymatic/metabolic activity are the major concerns in developing a successful formulation. About 40% of approved drugs which are in the current market and 90% of new drug molecules in the developmental pipeline are hydrophobic in nature. The challenge to formulate insoluble drugs has met with various approaches to overcome the problems related to solubility, application of nanotechnology is one amongst them. The present review deals with various nanocarriers and technologies that are proven to be effective in enhancing the bioavilability of poorly soluble drugs.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1096
Author(s):  
Christos S. Katsiotis ◽  
Michelle Åhlén ◽  
Maria Strømme ◽  
Ken Welch

Fused deposition modelling (FDM) is the most extensively employed 3D-printing technique used in pharmaceutical applications, and offers fast and facile formulation development of personalized dosage forms. In the present study, mesoporous materials were incorporated into a thermoplastic filament produced via hot-melt extrusion and used to produce oral dosage forms via FDM. Mesoporous materials are known to be highly effective for the amorphization and stabilization of poorly soluble drugs, and were therefore studied in order to determine their ability to enhance the drug-release properties in 3D-printed tablets. Celecoxib was selected as the model poorly soluble drug, and was loaded into mesoporous silica (MCM-41) or mesoporous magnesium carbonate. In vitro drug release tests showed that the printed tablets produced up to 3.6 and 1.5 times higher drug concentrations, and up to 4.4 and 1.9 times higher release percentages, compared to the crystalline drug or the corresponding plain drug-loaded mesoporous materials, respectively. This novel approach utilizing drug-loaded mesoporous materials in a printed tablet via FDM shows great promise in achieving personalized oral dosage forms for poorly soluble drugs.


2021 ◽  
Vol 595 ◽  
pp. 120257
Author(s):  
Seong Jun Kim ◽  
Jae Chul Lee ◽  
Jin Young Ko ◽  
Seon Ho Lee ◽  
Nam Ah Kim ◽  
...  

2019 ◽  
Vol 9 (01) ◽  
pp. 15-20
Author(s):  
B Pandey ◽  
A B Khan

The aim of the review was to explore the necessity, advantages and different techniques of oral films for enhancing solubility of poorly soluble drugs with an emphasis on the newer, state-of the art technologies, such as 3D printing and hot-melt extrusion (HME). The historical background of oral films is presented along with the regularly used techniques. The modern approach of quality-by-design (QbD) is unravelled, identifying appropriate critical process parameters (CPP) and applied to oral films. A section is devoted modern technologies such as 3D printing and HME of oral films. Oral films are innovative formulations by which poorly soluble drugs have been founds to give positive results in enhancing their solubility and dissolution characteristics. With modern sophisticated techniques, precise mass production of oral films has been given a thrust. Oral films have better patient compliance, improved biopharmaceutical properties, improved efficacy, and better safety. By applying QbD and implementation of modern technologies the newer generation of oral films are yielding promising results


Sign in / Sign up

Export Citation Format

Share Document