Experimental investigation on microstructure, mechanical properties, and residual stresses of dissimilar welded joint of martensitic P92 and AISI 304L austenitic stainless steel

2021 ◽  
Vol 194 ◽  
pp. 104536 ◽  
Author(s):  
Gaurav Dak ◽  
Chandan Pandey
Author(s):  
Takuro Terajima ◽  
Takashi Hirano

As a counter measurement of intergranular stress corrosion cracking (IGSCC) in boiling water reactors, the induction heating stress improvement (IHSI) has been developed as a method to improve the stress factor, especially residual stresses in affected areas of pipe joint welds. In this method, a pipe is heated from the outside by an induction coil and cooled from the inside with water simultaneously. By thermal stresses to produce a temperature differential between the inner and outer pipe surfaces, the residual stress inside the pipe is improved compression. IHSI had been applied to weld joints of austenitic stainless steel pipes (P-8+P-8). However IHSI had not been applied to weld joints of nickel-chromium-iron alloy (P-43) and austenitic stainless steel (P-8). This weld joint (P-43+P-8) is used for instrumentation nozzles in nuclear power plants’ reactor pressure vessels. Therefore for the purpose of applying IHSI to this one, we studied the following. i) Investigation of IHSI conditions (Essential Variables); ii) Residual stresses after IHSI; iii) Mechanical properties after IHSI. This paper explains that IHSI is sufficiently effective in improvement of the residual stresses for this weld joint (P-43+P-8), and that IHSI does not cause negative effects by results of mechanical properties, and IHSI is verified concerning applying it to this kind of weld joint.


Sign in / Sign up

Export Citation Format

Share Document